How is Dynamic Symbolic Execution

Different from Manual Testing?
An Experience Report on KLEE

Xiaoyin Wang, Lingming Zhang, Philip Tanofsky
University of Texas at San Antonio
University of Texas at Dallas

Outline

® Background

® Research Goal

® Study Setup

® Quantitative Analysis

® Qualitative Analysis

® Summary and Future Work

2727

Background

® Dynamic Symbolic Execution (DSE)

® A promising approach to automated test
generation

® Aims to explore all/specific paths in a program

@ Generates and solves path constraints at
runtime

@ KLEE
® A state-of-the-art DSE tool for C programs
@ Specially tuned for Linux Coreutils
@ Reported higher coverage than manual testing

3 /27

Research Goal

® Understand the ability of state-of-art DSE
tools

® ldentify proper scenarios to apply DSE tools

® Discover potential opportunities for
enhancement

4127

Research Questions

@ Are KLEE-based test suites comparable with
manually developed test suites on test
sufficiency?

@ How do KLEE-based test suites compare with
manually test suites on harder testing problems?

® How much extra value can KLEE-based test
suites provide to manually test suites?

® What are the characteristics of the code/mutants
covered/killed by one type of test suites, but not
by the other?

5127

Study Process

[©] =IO

KLEE tests reduced KLEE tests

program l a -

manual tests . coverage bug finding !

. quality metrics

~ -
L] -
. EE BN B BN BN B BN BN BN BN BN BN BN BN BN BN AN BN BN BN AN B B

6 /27

Study Setup: Tools

- N
® KLEE
e Default setting for © GCOV
test generation @ Statement coverage
e Execute each program collection
for 20 minutes L
4 p
®© MutGen

® Generates 100
mutation faults for
each program

® 4 mutation operatorsj

7127

Study Setup: Subjects

® CoreUtils Programs
e Linux utilities programs

® KLEE includes APl modeling and turning of
them

@ Used by KLEE in its evaluation

e We did not include CoreUtils programs:
® Do not generate any output
® Output is not deterministic

8 /27

Study Setup: Measurements

® Code coverage
@ Statement coverage

® Fault detection rate

@ Compare the command-line output of the
original program and mutated programs to
check if the mutation faults can be detected

91727

Quantitative Analysis: Coverage

100

90

80

70

60

50

40

@ Avg.: 80.5% vs. 70.9%
20 ® Med.: 86.7% vs. 73.8%
L ® Better performance: 28 vs. 10

30

Quantitative Analysis: Coverage

100

® Reduced KLEE tests has very similar code

3° coverage (80.3%) with the original (80.5%)

® Only 4 projects have less coverage than
original KLEE tests

11727

Quantitative Analysis: Fault
Detection

100

90

80

70

60

50

40

Avg.: 51.4% vs. 54.4%
Med.: 55% vs. 58%
Better performance: 12 vs. 22

30

20

Qo S [(V] U o0 c < ¥ - (9]
cC c o —= o c : g - - c O o ¥ < 2
. O o S

HHHHH

Quantitative Analysis: Fault
Detection

100
90
80

70

5 ---II I||| III 1 |I ----- I | II
®“§ ®Reduced KLEE tests has much lower fault

* ol detection rate (42.8%) with the original (51.2%)
“ B8, @26 projects have less fault detection rate than |

° original KLEE tests
0
ﬂ'CDCQEES"U&OJ:S>'ULzaxwho'owz'omx‘t,xto_égum;b tttt
CES®FEOTYSET S EROTEETE EE RS EESET 858 g5 £ 3
w 8 & © © o a v o) [X 3 S c £ 75 E 5 2 2 @ 0 Y o<
8@ ¢ 5 G X 9 o c < e c £ E s o g c v] ¥ x 5
8 o (S O £ > o0 80 £ < o 9)
7} = O [e) [N st
(] o —_ c
0]
W KLEE (Red)) Man

13/27

Quantitative Analysis: Harder Tasks

® Hard-to-cover code

1: void main() {

2: int sum, 1i;

3: sum = 0;

4: i=1;

5: while (i<11) { o
7: :‘;

8: 19

9: 1} ’

10:

(Code)

5
~ ~ N

~

~ ~

N . 5
expression: expression: congrol-point:
sum=0 i= 2 27 whilei<l |
L 2
- - g
-

 The difficulty to cover a statement can be ression
£ measured by its depth in an Interprocedural |

. "#Control Dependence Graph (ICDG)
Ve € A e e '4“.||riil; - aanins
15: } 1}

Example

expression: expression:
add$result=a+b add$result=a (L14

Interprocedural Control Dependence Graph (ICDG)
14/27

Quantitative Analysis: Harder Tasks
(Code)

® Hard-to-cover code:

Coverage (%)

|||||||||||||||||||
KKKKKKKKKKKKKKKKKKKKKK

e Coverage of KLEE Jesis.drons.di;
S;Pth goes IarA hint of where human
€ >ame Cc)Vedevelopers should help :

15/27

40

36

32

28

24

20

Quantitative Analysis: Harder Tasks
(Faults)

® Avg.: KLEE-Man: 6.1%, Man-KLEE: 9.3%, Neither: 5.1%
® Better performance: KLEE-Man: 12, Man-KLEE: 22 |

e
— Y-
$cuoo_EEu%gm_gé-gagaéw,&gggcggégéLaigggﬁbtvég
S €E 8 w3 € 6 £ 6 &8 X QO £ ET g 2 2 €S £7T a3 S8 5 o =
w & ¢ £ ¢ § o & o v 0 gE—‘ﬁx 8 € 57T € = @ o) 8 a ¢
UUUU U O o < 5 S0 00 EE =] 8L S X
A £ 5 9) a o
Iy T v =
a8
' KLEE-Man Man-KLEE None

16/27

Quantitative Analysis: KLEE's Extra
Value (Coverage)

il

100

90

8

o

7

6

5

4

o o o o o

3

20 ® Avg.: Man: 70.9%, KLEE: 80.5%, Both: 89.2%
10 ® Med.: Man: 73.8%, KLEE: 86.7%, Both: 92.6%
0
3L EEE3S 53 R B L LR TR LRSS T L
L EEAR AN R LA S L S L LA AR RS
B KnM K-M

Quantitative Analysis: KLEE's Extra
Value (Fault Detection)

! l“ JadiLll i ll Il

100
90
80
70
60
50
40
30

20

Avg.: Man: 54.4%, KLEE: 51.3%, Both: 65.8%
Med.: Man: 58.0%, KLEE 55.0%, Both: 65.0%

vvvvvvvvvvvvvvvvvvvvvvvvvvvv
£ © £ ¢ &5 ¢ £ T 2 3 0 2 T £ c 5 = E g 96 v & c 3
a _0 S s X 9 = 5 ¥ % ¢ [v] = g9 &3 x»* 32 9 =
< 5 X o P o c € ~ 8 < B - 0o 8 o c
= X bo b0 S = g et
%) s 5 o o a
a 5 © °
o
. KnM K-M M-K

Qualitative Analysis

® Selection of code portion and mutation faults
e KLEE-Man code:
® 5 subjects with highest KLEE-Man code proportion
® 5 |longest code chunks
@ Man-KLEE code
® 10 longest Man-KLEE code chunks
o KLEE-Man / Man-KLEE mutation faults:

® 10 Randomly selected mutants (at most 1 in each
subject project)

® Covered by both test suites

19/27

KLEE-Man Code

® Error Handling Code
@ Examples

® expr: Manual tests fail to generate a bracket
mismatch

® paste: Manual tests fail to generate a file read error
® Exhausting all options
® Example:
® nl: Manual tests cover only 8 of 11 command options

® printf: Manual tests fail to cover most escape
characters

20/27

Man-KLEE Code

® Complex input structures:
@ Example:

® expr: KLEE tests fail to include an
expression containing a “:” operation and
parsed correctly

e rmdir: KLEE tests fail to generate a valid
path

e tsort: KLEE tests fail to include a tree
structure requiring double rotation in
balancing

21/27

KLEE-Man Mutants

@ Why not detected by manual tests?
@ Major Reason: mutation affects only uncovered code

@ Example:
/1 1fCoptind + 1 < argc){ //mutate to “optind + 2”
COVGI’GCI(\.. error (@0, 0, ("extra operand \%s"), quote (..));
}

Fault detection condition:
(optind+ [<argc) != (optind+2<argc)
]

N

ind+,/ ==
optind 2|—| argc

optind+ | < argc

22/27

Error Condition|
t Not Covered by §
? Manual Tests i

Man-KLEE Mutants

® Why not detected by KLEE tests?
@ Major reason: meaningful path not covered

e Example: basename, try to remove suffix of a file
nhame

name
char *np;
* .
const char *sp; LT
np = name + strlen (nhame); suffix
sp = suffix + strlen (suffix); name fip — i
L tx

while (np > name && sp > suffix) a .| tirt/\0
if (*--np = *--sp)

return; nam%gx s¢p <«
i VYl ¢+l ¢ \n
a3+ Ix 1\
if (np > name)

*np = *\slash0’; suffix/sp

2327 Ctix | t\0

Man-KLEE Mutants

® Why not detected by KLEE tests?
e E.g., meaningful path not covered

e Example: basename, try to remove suffix of a file
nhame

char *np; - ~
const char *sp; L, L !
1 . 1
1

QQ rp = name + strlen (named; | (SPT_ i SPTRC
.. sp = suffix + strlen (suffix);
. KLEE Tests p

OQ@ while (np > name & sp > suffix)
1f (F--np = *--5p) emesmemes
return; 4

I —999) : =D P
name + strlen (name); Sp= . 1sp="bc

. if (np > name)
O

*np = ’$\slashso’; fcannot execute the valid path §

=~

24/27

Take-Home Message (Summary)

® While KLEE tests provide competitive coverage,
their fault detection rates are lower

® Manual tests are better in covering hard-to-cover
code and detecting hard-to-detect faults

® KLEE tests can provide non-trivial extra supports to
manual tests in both coverage and fault detection

® KLEE is better at covering error handling code and
exhausting a large number of options

® KLEE is worse at handling input with complicated
structures, and may miss meaningful paths

25/27

Future Work

® Larger-scale quantitative and qualitative study
e Larger and more subject programs
@ More test termination criteria
@ More measurements of code-coverage difficulty
e Real-world faults

® More studies on other DSE tools
® Improving state-of-the-art DSE techniques
e Knowledge of input formats

e Integration of string constraint solvers

e Guiding test-generation towards meaningful
paths

26/27

Thanks! Questions!?

