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Background

๏ Dynamic Symbolic Execution (DSE)
•A promising approach to automated test 

generation
•Aims to explore all/specific paths in a program
•Generates and solves path constraints at 

runtime
๏ KLEE
•A state-of-the-art DSE tool for C programs
•Specially tuned for Linux Coreutils
•Reported higher coverage than manual testing
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Research Goal

๏ Understand the ability of state-of-art DSE 
tools
!

๏ Identify proper scenarios to apply DSE tools
!

๏ Discover potential opportunities for 
enhancement

���4



/27

Research Questions

๏ Are KLEE-based test suites comparable with 
manually developed test suites on test 
sufficiency?

๏ How do KLEE-based test suites compare with 
manually test suites on harder testing problems?

๏ How much extra value can KLEE-based test 
suites provide to manually test suites?

๏ What are the characteristics of the code/mutants 
covered/killed by one type of test suites, but not 
by the other?
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Study Process

program

KLEE tests

manual tests coverage bug finding
quality metrics

reduced KLEE tests
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Study Setup: Tools
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๏ KLEE
•Default setting for 

test generation
•Execute each program 

for 20 minutes

๏ GCOV
•Statement coverage 

collection

๏ MutGen
•Generates 100 

mutation faults for 
each program

•4 mutation operators
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Study Setup: Subjects

๏ CoreUtils Programs
•Linux utilities programs
•KLEE includes API modeling and turning of 

them
•Used by KLEE in its evaluation
!

•We did not include CoreUtils programs:
•Do not generate any output
•Output is not deterministic

���8



/27

Study Setup: Measurements

๏ Code coverage
•Statement coverage
!

๏ Fault detection rate
•Compare the command-line output of the 

original program and mutated programs to 
check if the mutation faults can be detected
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Quantitative Analysis: Coverage
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KLEE Man

๏ Avg.: 80.5% vs. 70.9%
๏ Med.: 86.7% vs. 73.8%
๏ Better performance: 28 vs. 10
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KLEE (Red.) Man

Quantitative Analysis: Coverage

๏ Reduced KLEE tests has very similar code 
coverage (80.3%) with the original (80.5%)

๏ Only 4 projects have less coverage than 
original KLEE tests
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Quantitative Analysis: Fault 
Detection
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KLEE Man

๏ Avg.: 51.4% vs. 54.4%
๏ Med.: 55% vs. 58%
๏ Better performance: 12 vs. 22
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Quantitative Analysis: Fault 
Detection
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KLEE (Red.) Man

๏ Reduced KLEE tests has much lower fault 
detection rate (42.8%) with the original (51.2%)

๏ 26 projects have less fault detection rate than 
original KLEE tests
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Quantitative Analysis: Harder Tasks 
(Code)

๏ Hard-to-cover code

���14

those code and mutants. By contrast, if manually developed test
suites cover/kill more hard-to-cover code/hard-to-kill mutants, it
can show the directions in which KLEE-based techniques can be
further improved.

To measure the difficulty of covering certain code, we leverage
the idea as follows. If covering a statement requires the control flow
to take certain branch outcome at more control points (i.e. condi-
tional predicates), it is likely that more restricted inputs are required
to cover the statement, and the statement is harder to cover. There-
fore, we measure the difficulty to cover a statement with its depth in
an Interprocedural Control Dependence Graph (ICDG) [10]. Typi-
cally, an ICDG also includes nodes that are not control point (e.g.,
method entries). Since only control points affect the difficulty of
covering code under their control, we only count control points
when calculating the depth of a statement. When there are multiple
paths to reach a statement’s corresponding node in the ICDG (from
the main entry node), we always choose the path that contains the
least number of control points to calculate the depth. In the rest
of the paper, for brevity, we refer to the depth of a statement in
ICDG (considering only control points) as the statement’s ICDG-
Depth. It should be noted that, it is very difficult to measure the
difficulty for covering certain code. We believe that ICDG-Depth
reflects code-covering difficulty to some extent, but there are also
other factors (e.g., complexity of code and path constraints) that we
may consider in future studies.

Figure 1 shows a sample ICDG generated by CodeSurfer [1]
from the code portion below, and we highlight the control points
with bold font. In the code portion, consider the statements at Line
6 and Line 14, whose corresponding nodes in ICDG have been
marked with their line numbers. From the ICDG, we can see that
the paths from the main entry node to the node marked with “Line
6” includes at least 1 control point (marked as red dashed line),
while the paths from the main entry node to the node marked with
“Line 14” includes at least 2 control points (marked as green dashed
line). Therefore, the ICDG-Depths of the statement at Line 6 and
Line 14 are 1 and 2, respectively.

1: void main() {
2: int sum, i;
3: sum = 0;
4: i = 1;
5: while ( i<11 ) {
6: sum = add(sum, i);
7: i = add(i, 1);
8: }
9: }
10: int add(int a, int b){
11: if (b > 0)
12: return a + b;
13: else
14: return a;
15: }

For the difficulty of killing mutants, there are two aspects to be
considered. The first aspect is whether the mutant is difficult to be
covered, and the second aspect is whether the mutant is difficult
to be killed once it is covered. Since the first aspect actually has
been considered in hard-to-cover code, we consider only the sec-
ond aspect in the definition of hard-to-kill mutants. Specifically,
we define hard-to-kill mutants as mutants that are covered but not
killed by both test suites.

3. QUANTITATIVE ANALYSIS
In this section, we present the results of our empirical study and

how these results may answer the research questions (RQ1-RQ3)
in Section 2.1.

Figure 1: A Sample Inter-Procedure Control Dependence
Graph

3.1 Test Sufficiency Comparison
In this subsection, we present the test sufficiency of KLEE-based

test suites and manually developed test suites in Table 2, to answer
RQ1. In Table 2, the first column presents the name of each sub-
ject. Columns 2-3 present the code coverage of KLEE-based test
suites and manually developed test suites, respectively. The num-
bers in brackets in Column 2 are the comparative code coverage of
KLEE-based test suites (code coverage when reduced to the size of
corresponding manually developed test suites). Similarly, Columns
4-5 present the mutation scores of KLEE-based test suite, and man-
ually developed test suites, respectively. The numbers in brackets
in Column 4 are the comparative mutation scores of KLEE-based
test suites (mutation scores when reduced to the size of correspond-
ing manually developed test suites). As a reference, in Column 6,
we present the ratio of the number of manual test cases to the num-
ber of KLEE-based test cases for each subject. From Table 2, we
have the following four observations.

First of all, we confirm that the code coverage of KLEE-based
test suites are better than that of manually developed test suites.
Specifically, the average code coverage is 80.5% for KLEE-based
test suites while it is 70.9% for manually developed test suites. Fur-
thermore, KLEE-based test suites achieve higher code coverage in
28 of 40 subjects, same code coverage in 2 subjects, and lower code
coverage in the remaining 10 subjects.

Second, we find that although KLEE-based test suites achieve
higher code coverage, their average mutation score (51.3%) is lower
than that of manually developed test suites (54.5%). Furthermore,
manually developed test suites achieve higher mutation scores in
22 of 40 subjects, same mutation scores in 4 subjects, and lower
mutation scores in the remaining 14 subjects.

Third, as expected, sizes of KLEE-based test suites are much
larger than sizes of manually developed test suites. Column 8 shows
that, on average, the sizes of manually developed test suites are only
10.2% of the size of KLEE-based test suites. In two subjects, the
remaining percentages are 100%, indicating that the manually de-
veloped test suites are larger than KLEE-based test suites, so we
did not do prioritization and reduction at all.

Fourth, from numbers in brackets, we observe that, after reduc-
ing the sizes of KLEE-based test suites to averagely 10.2% of their
original sizes, the reduced test suites are able to achieve very simi-
lar code coverage (80.3%) compared with the original test suites
(80.5%), the mutation scores drop more significantly than code
coverage (i.e., from 51.3% to 42.8%).

3.2 Study on Hard Testing Problems
To answer RQ2, we compared the test sufficiency of KLEE-

based test suite and manually developed test suite on the hard-to-

Example

entry:main

expression:	

sum=0

expression:	

i=1

control-point: 
while i<11

Interprocedural Control Dependence Graph (ICDG) 

call-site:	

add expression:	


sum=add$0 (L6)
call-site:	


add
expression:	


i=add$1

control-point:	

if b>0

expression:	

add$result=a+b

expression:	

add$result=a (L14)

entry:	

add

The difficulty to cover a statement can be 
measured by its depth in an Interprocedural 
Control Dependence Graph (ICDG) 
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Quantitative Analysis: Harder Tasks 
(Code)

๏ Hard-to-cover code:
!
!
!
!
!
!

๏ Coverage of KLEE tests drops dramatically as 
depth goes larger, while manual tests maintain 
the same coverage

���15
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Figure 2: The comparison of coverage achieved by KLEE and Manual test suites on code of different ICDG-Depths

Table 4: Overlap and Difference of Covered Code and Killed
Mutants

Subject Coverage Killed Mutants
K\M K-M M-K K\M K-M M-K

base64 78.1 11.4 0.0 59.0 0.0 24.0
basename 97.4 2.6 0.0 72.0 0.0 22.0
chcon 13.8 17.9 1.5 16.0 0.0 0.0
chgrp 52.2 16.7 24.4 26.0 2.0 49.0
cksum 56.5 0.0 12.9 0.0 0.0 0.0
comm 46.9 21.4 17.3 48.0 7.0 18.0
cut 75.0 2.4 14.9 66.0 10.0 17.0
dd 46.5 1.2 22.5 7.0 4.0 3.0
dircolors 76.6 12.2 4.8 66.0 0.0 33.0
dirname 96.8 3.2 0.0 90.8 0.0 2.3
du 61.5 8.6 12.0 34.0 17.0 32.0
env 66.7 33.3 0.0 61.9 23.8 0.0
expand 70.9 13.9 5.3 45.0 0.0 0.0
expr 33.7 2.4 40.5 32.0 0.0 26.0
fold 69.0 17.7 10.6 38.0 17.0 13.0
groups 59.5 35.1 0.0 35.8 52.8 0.0
link 60.7 35.7 3.6 38.0 48.0 8.0
logname 52.0 40.0 0.0 22.5 50.0 2.5
mkdir 77.3 7.6 15.2 57.0 4.0 29.0
mkfifo 76.6 14.9 6.4 27.4 0.0 36.9
mknod 56.3 17.5 17.5 57.0 20.0 4.0
nice 44.1 50.8 0.0 56.0 5.0 12.0
nl 36.0 50.7 6.2 21.0 42.0 9.0
od 38.2 19.6 6.3 8.0 0.0 6.0
paste 56.1 34.2 0.0 41.0 19.0 2.0
pathchk 40.9 31.1 0.0 26.0 0.0 22.0
printf 58.4 23.0 9.3 42.0 17.0 21.0
readlink 78.0 20.0 2.0 59.1 17.0 3.4
rmdir 62.5 15.3 16.7 42.0 4.0 25.0
sleep 52.2 15.2 15.2 27.0 2.0 24.0
split 82.0 7.4 4.1 31.0 2.0 27.0
sum 78.9 15.8 0.0 65.0 12.0 10.0
sync 65.0 35.0 0.0 29.0 0.0 0.0
tee 73.9 13.0 0.0 79.0 1.0 19.0
touch 67.4 13.9 8.3 10.0 0.0 15.0
tr 44.7 4.3 38.5 8.0 18.0 5.0
tsort 90.6 2.0 5.9 75.0 5.0 12.0
unexpand 76.8 11.9 5.2 54.0 22.0 4.0
unlink 72.0 28.0 0.0 18.3 0.0 35.2
wc 47.7 23.8 20.4 7.0 33.0 7.0
Avg. 62.2 18.3 8.7 39.9 11.4 14.5

by both types of test suites, and one type of test suite only. For
brevity, in the title lines of the table we use “K” as the abbreviation
of “KLEE-based”, and “M” as the abbreviation of “Manual”. Then,
for example, K\M indicates all code or mutants that are covered or
killed by both KLEE-based test suites and manual test suites. From
Table 4, we can observe that, KLEE-based test suites provide extra
value to manually developed test suites. Specifically, KLEE-based
test suites cover 18.3% extra code and kill 11.4% extra mutants on
average. Furthermore, KLEE-based test suites cover extra code in
all 40 subjects, and kill extra mutants in 25 of 40 subjects.

3.4 Summary
In this subsection, we summarize the findings of our quantitative

study and the answers of research questions RQ1 through RQ3.

Comparison on Test Sufficiency. Our experiments show that
KLEE-based test suites are able to achieve higher coverage than
manually developed test suites, but their mutation scores are lower.
This observation implies that code coverage is not sufficient in eval-
uating test suites. KLEE-based techniques target at high code cov-
erage and that is achieved, but the generated test suites may be
not as effective on revealing software bugs. It is possible to have
KLEE-based techniques to target at pre-planted mutants [43], but
we may still not guarantee that the generated test suites can kill
other mutants or real bugs. Reducing KLEE-based test suites to the
size of manually developed test suites cause a drop of 9 percentage
points on mutation scores. This implies that, to achieve similar test
sufficiency, human testers may spend more time on constructing
test oracles for KLEE-based test suites if automatic test oracles are
not available.

Hard-to-Cover Code and Hard-to-Kill Mutants. Our experi-
ments show that manually developed test suites perform better on
both hard-to-cover code and hard-to-kill mutants. More advanced
techniques are still required to enhance KLEE-based test suites for
hard testing problems, or it may be wise to have human testers help
on hard testing problems [41].

Replacement or Complement. Our experiments show that KLEE-
based test suites and manually developed test suites tend to cover
the same code and kill the same mutants. However, KLEE-based
test suites can still provide extra values on both code coverage and
mutation scores.

3.5 Threats to Validity

3.5.1 Construct Validity
Threats to construct validity are concerned with whether the ex-

perimental setup and metrics reflect real-world situations. The ma-
jor threat to construct validity for our study is the metrics that we
used for test sufficiency. To reduce this threat, following existing
studies [18, 30, 23], we used the widely used statement coverage
and mutation testing for assessing test sufficiency. However, al-
though mutation testing has been shown to be suitable for software-
testing experimentation [3, 12, 5], mutation faults are not exactly
the same with real faults. Future reduction of this threat requires
additional studies on subject systems with real bug information.

3.5.2 Internal Validity
Threats to internal validity are concerned with the uncontrolled

factors that may be also responsible for the results. The major threat
to internal validity for our study is the potential faults in our imple-
mentations and the tools that we used to carry out our experiments.
To reduce this threat, we used mature tools that have been widely
used in software engineering research in our experiments, e.g., mut-
Gen [3], gcov [2], and KLEE [7]. We also did our best to check
and remove all errors from our code for statistics and comparison.

A hint of where human 
developers should help
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Quantitative Analysis: Harder Tasks 
(Faults)

���16
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KLEE-Man Man-KLEE None

๏ Avg.: KLEE-Man: 6.1%, Man-KLEE: 9.3%, Neither: 5.1%
๏ Better performance: KLEE-Man: 12, Man-KLEE: 22
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Quantitative Analysis: KLEE’s Extra 
Value (Coverage)

���17
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K∩M K-M M-K

๏ Avg.: Man: 70.9%, KLEE: 80.5%, Both: 89.2%
๏ Med.: Man: 73.8%, KLEE: 86.7%, Both: 92.6%
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Quantitative Analysis: KLEE’s Extra 
Value (Fault Detection)
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K∩M K-M M-K

๏ Avg.: Man: 54.4%, KLEE: 51.3%, Both: 65.8%
๏ Med.: Man: 58.0%, KLEE: 55.0%, Both: 65.0%
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Qualitative Analysis

๏ Selection of code portion and mutation faults
•KLEE-Man code: 

•5 subjects with highest KLEE-Man code proportion
•5 longest code chunks 

•Man-KLEE code
•10 longest Man-KLEE code chunks

•KLEE-Man / Man-KLEE mutation faults: 
•10 Randomly selected mutants (at most 1 in each 

subject project)
•Covered by both test suites

���19
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KLEE-Man Code

๏ Error Handling Code
•Examples

•expr: Manual tests fail to generate a bracket 
mismatch

•paste: Manual tests fail to generate a file read error
๏ Exhausting all options
•Example:

•nl: Manual tests cover only 8 of 11 command options
•printf: Manual tests fail to cover most escape 

characters

���20
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Man-KLEE Code

๏ Complex input structures:
•Example:

•expr: KLEE tests fail to include an 
expression containing a “:” operation and 
parsed correctly

•rmdir: KLEE tests fail to generate a valid 
path

•tsort: KLEE tests fail to include a tree 
structure requiring double rotation in 
balancing

���21
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KLEE-Man Mutants
๏ Why not detected by manual tests?
•Major Reason: mutation affects only uncovered code
•Example:

���22

   if(optind + 1 < argc){    //mutate to “optind + 2”	
    error (0, 0, ("extra operand \%s"), quote (…));	

   }

Fault detection condition: 	

(optind+1<argc) != (optind+2<argc)

optind+2 == argc

optind+1 < argc

Error Condition 
Not Covered by 
Manual Tests

covered
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Man-KLEE Mutants
๏ Why not detected by KLEE tests?
•Major reason: meaningful path not covered
•Example: basename, try to remove suffix of a file 

name
	 	 char *np;	
	 	 const char *sp;	
!
	 	 np = name + strlen (name);	
	 	 sp = suffix + strlen (suffix);	
!
	 	 while (np > name && sp > suffix)	
	 	     if (*--np != *--sp)	
	 	         return;	
!
!
	 	 if (np > name)	
	 	     *np = ’$\slash$0’;

���23

t. x t

a t. r t \0

\0

npname

spsuffix

a t. x t \0

npname

t. x t \0

spsuffix

t. x t

a t. x t \0

\0

np
name

suffix/sp
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Man-KLEE Mutants

	 	 char *np;	
	 	 const char *sp;	
!
	 	 np = name + strlen (name);	
	 	 sp = suffix + strlen (suffix);	
!
	 	 while (np > name && sp > suffix)	
	 	     if (*--np != *--sp)	
	 	         return;	
!
!
	 	 if (np > name)	
	 	     *np = ’$\slash$0’;

���24

np=”a.txt”	

sp=””

np=”a.txt”	

sp=”bc”

KLEE Tests

KLEE tests: Although     	

covering all statements, 	

cannot execute the valid path

๏ Why not detected by KLEE tests?
•E.g., meaningful path not covered
•Example: basename, try to remove suffix of a file 

name
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Take-Home Message (Summary)

๏ While KLEE tests provide competitive coverage, 
their fault detection rates are lower

๏ Manual tests are better in covering hard-to-cover 
code and detecting hard-to-detect faults

๏ KLEE tests can provide non-trivial extra supports to 
manual tests in both coverage and fault detection

๏ KLEE is better at covering error handling code and 
exhausting a large number of options 

๏ KLEE is worse at handling input with complicated 
structures, and may miss meaningful paths
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Future Work
๏ Larger-scale quantitative and qualitative study
•Larger and more subject programs
•More test termination criteria
•More measurements of code-coverage difficulty
•Real-world faults

๏ More studies on other DSE tools 
๏ Improving state-of-the-art DSE techniques
•Knowledge of input formats
•Integration of string constraint solvers
•Guiding test-generation towards meaningful 

paths
•…
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Thanks! Questions?


