
Randomized Stress-Testing of
Link-Time Optimizers

Vu Le, Chengnian Sun, Zhendong Su

University of California, Davis

7/15/2015 1

General Software Build Process

Linker

Compiler

7/15/2015 2

General Software Build Process

Linker

Compiler

 Compiler Optimizations
 Intra-procedural, within a function
 Inter-procedural, across functions
 Whole-program, over all the functions

 Optimizing a translation unit (*.c),
 Intra-procedural
 Inter-procedural? Limited to the unit
 Whole-program? Usually NO.

7/15/2015 3

General Software Build Process

Linker

Compiler

 How to perform
 More aggressive inter-procedural opts?
 Or even whole-program opts?

7/15/2015 4

General Software Build Process

Linker

Compiler

 How to perform
 More aggressive inter-procedural opts?
 Or even whole-program opts?

(LTO)Link-Time Optimizer

7/15/2015 5

General Software Build Process

Linker

Compiler

7/15/2015 6

Software Build Process with LTO (-flto)

Linker -flto

Compiler -flto

save intermediate
representation (IR) to *.obj

read all IR back and optimize

7/15/2015 7

Motivation – Stress Testing LTO
 LTO is increasingly important [1,2]
 Reduce code size by 15-20%
 Increase speed by 5-15%

 No effort yet on stress testing LTO
 Csmith [3] and Orion [4] focus on classical optimizers

7/15/2015 8

[1] B. Anckaert, F. Vandeputte, B. Bus, B. Sutter, and K. Bosschere. Link-Time Optimization of IA64 Binaries.
In M. Danelutto, M. Vanneschi, and D. Laforenza, editors, Euro-Par 2004 Parallel Processing
[2] B. De Sutter, L. Van Put, D. Chanet, B. De Bus, and K. De Bosschere. Link-Time Compaction and Optimization
of Arm Executables. ACM Trans. Embed. Comput. Syst 2007
[3] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in C compilers. PLDI 2011
[4] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence modulo inputs. PLDI 2014

Challenges
 How to generate LTO-relevant test programs?
 Csmith and Orion generate single-file test programs

 How to reduce bug-triggering test programs?
 Delta and Creduce, designed for single-file tests

7/15/2015 9

Overall Framework – Differential Testing

7/15/2015 10

Random
Program

Build
Config.

Compare

Split
Files

Compile
(no LTO)

Compile
(LTO)

Compile
(LTO)

Execute Execute Execute

Reduce

Overall Framework – Differential Testing

7/15/2015 11

Random
Program

Build
Config.

Compare

Split
Files

Compile
(no LTO)

Compile
(LTO)

Compile
(LTO)

Execute Execute Execute

Reduce

Overall Framework – Differential Testing

7/15/2015 12

Random
Program

Build
Config.

Compare

Split
Files

Compile
(no LTO)

Compile
(LTO)

Compile
(LTO)

Execute Execute Execute

Reduce

Overall Framework – Differential Testing

7/15/2015 13

Random
Program

Build
Config.

Compare

Split
Files

Compile
(no LTO)

Compile
(LTO)

Compile
(LTO)

Execute Execute Execute

Reduce

Overall Framework – Differential Testing

7/15/2015 14

Random
Program

Build
Config.

Compare

Split
Files

Compile
(no LTO)

Compile
(LTO)

Compile
(LTO)

Execute Execute Execute

Reduce

Challenge I – Program Generation

7/15/2015 15

  Leverage existing program generators

 Convert a single-file test to multiple files

 Maximize the dependencies between source files

Challenge I – Program Generation (1)

7/15/2015 16

Csmith: Generate a random single-file program
with Csmith

Prog

Challenge I – Program Generation (2)

7/15/2015 17

Csmith: Generate a random single-file program
with Csmith

Orion: Inject arbitrary function calls into dead code
regions, to complicate inter-dependencies

Prog

Orion

Prog’

Challenge I – Program Generation (3)

7/15/2015 18

Csmith: Generate a random single-file program
with Csmith

Orion: Inject arbitrary function calls into dead code
regions, to complicate inter-dependencies

Split: Split the single-file program into multiple files,
 each file containing one function

Prog

Orion

Prog’

Split

Compiler -flto

Linker -flto

Challenge I – Build Configurations

7/15/2015 19

 Describe at which optimization level
 a translation unit should be compiled
 all object files should be linked

 Random configurations can further exercise LTO
 Opt as obfuscators Compiler -flto

Linker -flto

Challenge I – An Example

7/15/2015 20

expected output: 0

Challenge I – An Example

7/15/2015 21

expected output: 0

Challenge I – An Example

7/15/2015 22

expected output: 0

Challenge I – An Example

7/15/2015 23

expected output: 0

Challenge I – An Example

7/15/2015 24

expected output: 0

Challenge I – An Example

7/15/2015 25

expected output: 0
real output : 1

Challenge II – Reducing Test Programs

7/15/2015 26

 Reducing multiple files is challenging
 Interdependencies between translation units
 Avoiding undefined behaviors (CompCert)

 Delta/Creduce

Challenge II – Reducing Test Programs

7/15/2015 27

 Reducing multiple files is challenging
 Interdependencies between translation units
 Avoiding introducing undefined behaviors

 Instead, we reduce the single-file test program

Prog’

Split

Compiler -flto

Linker -flto

Evaluation

7/15/2015 28

 Two multi-core Ubuntu machines

 February 2014 – Janurary 2015

 37 valid bug reports to GCC and LLVM (11 fixed)

Bug Classification

7/15/2015 29

GCC LLVM Total
Wrong code 6 (5 fixed) 22 (0 fixed) 28

Crash 5 (5 fixed) 0 5

Linker Error 1 (1 fixed) 3 (0 fixed) 4

Conclusion

7/15/2015 30

 the first effort to stress-test LTO

 transformation way to generate test programs

 an effective technique to reduce LTO bugs

 11 months, 37 valid bugs in GCC and LLVM

7/15/2015 31

Overall Framework – Differential Testing

7/13/201510

Random
Program

Build
Config.

Compare

Split
Files

Compile
(no LTO)

Compile
(LTO)

Compile
(LTO)

Execute Execute Execute

Reduce

Challenge I – Program Generation (3)

7/13/201518

Csmith: Generate a random single-file program
with Csmith

Orion: Inject arbitrary function calls into dead code
regions, to complicate inter-dependencies

Split: Split the single-file program into multiple files,
each file containing one function

Prog

Orion

Prog’

Split

Compiler -flto

Linker -flto

Challenge II – Reducing Test Programs

7/13/201527

 Reducing multiple files is challenging
 Interdependencies between translation units
 Avoiding introducing undefined behaviors

 Instead, we reduce the single-file test program

Prog’

Split

Compiler -flto

Linker -flto

Bug Classification

7/15/201529

GCC LLVM Total
Wrong code 6 (5 fixed) 22 (0 fixed) 28

Crash 5 (5 fixed) 0 5

Linker Error 1 (1 fixed) 3 (0 fixed) 4

	Randomized Stress-Testing of Link-Time Optimizers
	General Software Build Process
	General Software Build Process
	General Software Build Process
	General Software Build Process
	General Software Build Process
	Software Build Process with LTO (-flto)
	Motivation – Stress Testing LTO
	Challenges
	Overall Framework – Differential Testing
	Overall Framework – Differential Testing
	Overall Framework – Differential Testing
	Overall Framework – Differential Testing
	Overall Framework – Differential Testing
	Challenge I – Program Generation
	Challenge I – Program Generation (1)
	Challenge I – Program Generation (2)
	Challenge I – Program Generation (3)
	Challenge I – Build Configurations
	Challenge I – An Example
	Challenge I – An Example
	Challenge I – An Example
	Challenge I – An Example
	Challenge I – An Example
	Challenge I – An Example
	Challenge II – Reducing Test Programs
	Challenge II – Reducing Test Programs
	Evaluation
	Bug Classification
	Conclusion
	Slide Number 31

