
Feedback-controlled
Random Test Generation

Kohsuke Yatoh1*, Kazunori Sakamoto2, Fuyuki Ishikawa2,
Shinichi Honiden12

1:University of Tokyo, 2:National Institute of Informatics

1* He is currently affiliated with Google Inc., Japan. All work is done in Univ. Tokyo and nothing to do with Google.

My First Motivation

Software testing

• Very important

• Tedious, labor-intensive and error-prone

2

I want someone ELSE to
write tests for me!

→ Automatic Test Generation

Two Sides of Automated Test Generation

3

System under test1 2

1. Input generation (data)
Generating interesting test data

2. Output verification (assertions)
Oracles – specifications, domain specific knowledge

This paper

Background

4

• Test by contracts [Pacheco.07]
• Regression test gen. [Robinson.11]
• Specification mining [Pradel.12]

• Test by property [Yatoh.14]
• Combination with other automated

test generation [Garg.13, Zhang.14]

Usage

FDRTClasses under
test

Random
method

sequences

Random test generation for OOP languages

Feedback-directed random test generation (FDRT)
[Pacheco.07]

Example

5

class AddressBook {
AddressBook(int capacity) {
assert capacity >= 0;
…
}
void add(Person person) {…}
}

class Person {
Person(String name) {
assert name != null;
…
}
}

AddressBook a1 =
new AddressBook(10);

Person p1 =
new Person(“foo”);

a1.add(p1);

//AddressBook a2 =
// new AddressBook(-1);

//Person p2 =
// new Person(null);

Person p3 =
new Person(“bar”);

a1.add(p3);

a1.add(p1);

Input: Class list Output: Method sequences

FDRT Pros & Cons

6

Our Contributions
1. Analyzed characteristics of FDRT

and found one cause of low and unstable coverage

2. Proposed a new method to mitigate the low coverage
(Feedback-controlled Random Test Generation)
→ 2x - 3x coverage for utility libraries

Applicable to wider range of SUT
than other methods like symbolic execution

Coverage of generated tests are low and unstable
→ less possibility to detect faults

Good

Bad

FDRT Algorithm

7

“foo”, “bar”, 1, -1,
true, false,…

Value Pool

class Person {
Person(String name)
{…}
bool equals(Person p)
{…}

}

Classes Under Test

Pool of Candidate Arguments
(Initialized with random primitives)

FDRT Algorithm

8

“foo”, “bar”, 1, -1,
true, false,…

Value Pool

Person p1 =
new Person(“foo”);

class Person {
Person(String name)
{…}
bool equals(Person p)
{…}

}

1. Choose Method
Person()

2. Choose
Argument
“foo”

3. Save
Return Value
p1

Classes Under Test

FDRT Algorithm

9

“foo”, “bar”, 1, -1,
true, false,

p1, …

Value Pool

Person p2 =
new Person(“bar”);

class Person {
Person(String name)
{…}
bool equals(Person p)
{…}

}

1. Choose Method
Person()

Classes Under Test

2. Choose
Argument
“bar”

3. Save
Return Value
p2

FDRT Algorithm

10

“foo”, “bar”, 1, -1,
true, false,
p1, p2, …

Value Pool

bool b1 =
p1.equals(p2);

class Person {
Person(String name)
{…}
bool equals(Person p)
{…}

}

1. Choose Method
equals()

Classes Under Test

2. Choose
Argument
p1, p2

3. Save
Return Value
b1

FDRT Algorithm

11

“foo”, “bar”, 1, -1,
true, false,
p1, p2, …

Value Pool

bool b1 =
p1.equals(p2);

class Person {
Person(String name)
{…}
bool equals(Person p)
{…}

}

1. Choose Method
equals()

Classes Under Test

2. Choose
Argument
p1, p2

3. Save
Return Value
b1

Feedback

Problems When Applying to Real Libraries

12

Commons Collections 4.0

1. Low test coverage

2. Unstable
dependency on

seed

Elapsed Time [seconds]

B
ra

n
ch

 C
o

ve
ra

ge
 [

%
]

Cause of Low and Unstable Coverage

Positive feedback loop of FDRT

⇒Bias grows in pool

⇒Less diversity of generated tests

13

Bias in pool is amplified by feedback (e.g. List)

[a]

[]

[a]

[b][]

[a,c]

[a,b]
[a]

[b]
[] [b,a]

[a,c]

[a,b]

[a,c,a]

[a,c,d][a,d]

Proposed Method

• Keep diversity by multiple pools
• Hold multiple pools at the same time

• Use multiple pools concurrently

• Promote diversity by manipulating pools

1. Select pool

2. Add pool

3. Delete pool

4. Global reset

14

Feedback-controlled Random Test Generation

Keep Diversity by Multiple Pools

• Hold multiple pools at the same time
Each pool may be biased, but keep diversity as whole

• Use multiple pools concurrently (in turn)
Enable pool manipulation described later

15

Single pool Set of pools

Original method Proposed method

Promote Diversity by Manipulating Pools

1. Select pool
Prioritize pools by ‘score’ function
(High priority for pools that are likely to archive higher coverage)

2. Add pool
Add new pools dynamically

3. Delete pool
Delete similar pools using ‘uniqueness’ function

4. Global reset
Reset all pools + Restart JVM

16See the paper for the definition of score and uniqueness function

Evaluation

17
Xeon X5650 (2.67GHz), 100GB RAM, CentOS 7.0

Isolated by Docker Ubuntu 14.04 w/ OpenJDK 1.7

• Generate tests using 3600 sec. and
record coverage of generated tests

• Conduct experiments with 30 different random seeds

Configuration

• 8 popular Java libraries from MVNRepository
SUT

• baseline
• reset
• control

Compared 3 methods
FDRT, one run
FDRT, reset every 100 sec.
Proposed method

Results – after 3600 seconds

18
8 Libraries x 3 methods (baseline, reset, control)

Pattern (1)
Pattern (2)

Pattern (3)

B
ra

n
ch

 C
o

ve
ra

ge
 [

%
]

(1) Large Utility Libraries

4 utility libraries with 50K ～200K LOC

Large improvement on average and variance of coverage

19

Commons Lang

Random testing is
semantically suitable
for this kind of libraries

Commons Collections

(2) Small Libraries

2 libraries with 10K LOC

Small improvement, as the original FDRT do very well

Improvement on increase speed

20

Commons Codec Gson

(3) Configuration-intensive Libraries

2 libraries (Database / Web server)

No improvement, very low coverage

Needs careful configuration to work properly

21

Jetty Server CoreH2

Summary

22

Low and unstable coverage of FDRT
Cause: Bias of pool due to positive feedback loop

Problem

Feedback-controlled Random Test Generation
• Keep diversity by multiple pools
• Promote diversity by pool manipulation

Method

Three result patterns depending on SUT
• Large utility libraries: Large improvement
• Small libraries: Small improvement, Less time for fixed coverage
• Configuration-intensive libraries: No changes

Result

23

Appendix

24

Bias and Limited Diversity

e.g. Black or non-black stone

25

class Stone {
bool black;
Stone(bool black) {…}
bool isBlack() {…}
Stone clone() {…}

}

Feedback Feedback

Bias Larger Bias

of generated stones

1. Select Pool

• Select pool that is most likely to increase coverage

• Scoring function

26

6.0 11.1 2.3 9.3 4.6

Improves average coverage

2. Add Pool

• Add a new pool every 1 second

27

3. Delete Pool

• Delete pools with similar contents,
when #pools exceeds a threshold

• Uniqueness function

28

0.8 0.4 0.9 0.3 0.6Improves (decreases)
Variance of coverage

4. Global Reset

• Reset every pool and restart JVM

• In order to remedy effect of nondeterministic
behaviors and JVM instability

29

Results

3 result patterns, depending on SUT property

30

Name LOC Category

(1)

Commons Collections 58,186 Collections

Commons Lang 66,628 Core Utilities

Guava 129,249 Core Utilities

Commons Math 202,839 Math Libraries

(2)
Commons Codec 13,948 Base64 Libraries

Gson 12,216 JSON Libraries

(3)
H2 Database Engine 158,926 Embedded SQL Databases

Jetty Server Core 32,316 Web Servers

Related Work

• Adaptive random testing [Ciupa.08]
• Similar concept as our approach
（Avoid testing with similar values）

• Heavy computation cost due to calculating distances
between every generated values [Arcuri.11]

• Combination with Dynamic Symbolic Execution (DSE)
• Use FDRT to create seed sequences for DSE

[Bounimova.13, Zhang.14]
• Alternatively execute FDRT and DSE [Garg.13]
Replacing FDRT with our approach would improve the
effectiveness and efficiency of these techniques

31

