
Test-Case Generation for Runtime Analysis
and Vice-Versa: Verification of Aircraft

Separation Assurance

Marko Dimjašević
University of Utah

Dimitra Giannakopoulou
NASA Ames Research Center

ISSTA 2015, Baltimore, Maryland
July 17, 2015

1 / 21



Goals

I Propose verification properties for aircraft separation
assurance software

I Verify properties at runtime

2 / 21



AutoResolver

I Part of US federal government’s NextGen project
I Developed at NASA Ames Research Center
I Software system for aircraft separation assurance
I 65K lines of Java code
I Its environment’s core: 450K lines of code

3 / 21



Conflict, Loss of Separation, Separation Assurance

4 / 21



Monitored Requirements
Verification Properties

P1 There should be a resolution for every conflict.
P2 Initial conflicts are resolved in the non-decreasing order of

their first time to loss of separation.
P3 New conflicts arising as a result of conflict resolution

should be inserted into the list of conflicts according to
their first loss of separation time.

P4 No picked resolution is allowed to cause a more imminent
secondary conflict.

Resolution Monitor
M1 For each conflict, report its resolution type and how it

changes over time.

5 / 21



Monitored Requirements
Verification Properties

P1 There should be a resolution for every conflict.

P2 Initial conflicts are resolved in the non-decreasing order of
their first time to loss of separation.

P3 New conflicts arising as a result of conflict resolution
should be inserted into the list of conflicts according to
their first loss of separation time.

P4 No picked resolution is allowed to cause a more imminent
secondary conflict.

Resolution Monitor
M1 For each conflict, report its resolution type and how it

changes over time.

5 / 21



Monitored Requirements
Verification Properties

P1 There should be a resolution for every conflict.
P2 Initial conflicts are resolved in the non-decreasing order of

their first time to loss of separation.

P3 New conflicts arising as a result of conflict resolution
should be inserted into the list of conflicts according to
their first loss of separation time.

P4 No picked resolution is allowed to cause a more imminent
secondary conflict.

Resolution Monitor
M1 For each conflict, report its resolution type and how it

changes over time.

5 / 21



Monitored Requirements
Verification Properties

P1 There should be a resolution for every conflict.
P2 Initial conflicts are resolved in the non-decreasing order of

their first time to loss of separation.
P3 New conflicts arising as a result of conflict resolution

should be inserted into the list of conflicts according to
their first loss of separation time.

P4 No picked resolution is allowed to cause a more imminent
secondary conflict.

Resolution Monitor
M1 For each conflict, report its resolution type and how it

changes over time.

5 / 21



Monitored Requirements
Verification Properties

P1 There should be a resolution for every conflict.
P2 Initial conflicts are resolved in the non-decreasing order of

their first time to loss of separation.
P3 New conflicts arising as a result of conflict resolution

should be inserted into the list of conflicts according to
their first loss of separation time.

P4 No picked resolution is allowed to cause a more imminent
secondary conflict.

Resolution Monitor
M1 For each conflict, report its resolution type and how it

changes over time.

5 / 21



Monitored Requirements
Verification Properties

P1 There should be a resolution for every conflict.
P2 Initial conflicts are resolved in the non-decreasing order of

their first time to loss of separation.
P3 New conflicts arising as a result of conflict resolution

should be inserted into the list of conflicts according to
their first loss of separation time.

P4 No picked resolution is allowed to cause a more imminent
secondary conflict.

Resolution Monitor
M1 For each conflict, report its resolution type and how it

changes over time.

5 / 21



Wrapper

Motivation

I Environment stubbing
I Light-weight testing with different kinds of input than

trajectories
I E.g. airspeed, initial heading, climb rate, heading

change, trajectory time, destination coordinates
I Test-case generation: control conflict creation process

Purpose

I Test-case generation
I Property verification at runtime

6 / 21



Wrapper

Motivation
I Environment stubbing
I Light-weight testing with different kinds of input than

trajectories
I E.g. airspeed, initial heading, climb rate, heading

change, trajectory time, destination coordinates

I Test-case generation: control conflict creation process

Purpose

I Test-case generation
I Property verification at runtime

6 / 21



Wrapper

Motivation
I Environment stubbing
I Light-weight testing with different kinds of input than

trajectories
I E.g. airspeed, initial heading, climb rate, heading

change, trajectory time, destination coordinates
I Test-case generation: control conflict creation process

Purpose

I Test-case generation
I Property verification at runtime

6 / 21



Wrapper

Motivation
I Environment stubbing
I Light-weight testing with different kinds of input than

trajectories
I E.g. airspeed, initial heading, climb rate, heading

change, trajectory time, destination coordinates
I Test-case generation: control conflict creation process

Purpose

I Test-case generation
I Property verification at runtime

6 / 21



Wrapper — Aspect-Oriented Programming

I Avoid usual way: instrumentation for verification
I Leave AutoResolver’s source code intact

AspectJ

I Java language extension
I Bytecode weaving (instrumentation)

In-house verification
I No external verification tool used (SMT solvers, MOP

tools)

7 / 21



Wrapper — Aspect-Oriented Programming

I Avoid usual way: instrumentation for verification
I Leave AutoResolver’s source code intact

AspectJ

I Java language extension
I Bytecode weaving (instrumentation)

In-house verification
I No external verification tool used (SMT solvers, MOP

tools)

7 / 21



Wrapper — Aspect-Oriented Programming

I Avoid usual way: instrumentation for verification
I Leave AutoResolver’s source code intact

AspectJ

I Java language extension
I Bytecode weaving (instrumentation)

In-house verification
I No external verification tool used (SMT solvers, MOP

tools)

7 / 21



Wrapper — Properties

Properties as AspectJ aspects

I 1 property = 1 aspect
I 1 aspect = multiple pointcuts and advices

Pointcuts
I Where are interesting points of execution in

AutoResolver?
I Points in wrapper itself

Advices
I Actions to be taken at pointcuts

8 / 21



Wrapper — Properties

Properties as AspectJ aspects

I 1 property = 1 aspect
I 1 aspect = multiple pointcuts and advices

Pointcuts
I Where are interesting points of execution in

AutoResolver?

I Points in wrapper itself

Advices
I Actions to be taken at pointcuts

8 / 21



Wrapper — Properties

Properties as AspectJ aspects

I 1 property = 1 aspect
I 1 aspect = multiple pointcuts and advices

Pointcuts
I Where are interesting points of execution in

AutoResolver?
I Points in wrapper itself

Advices
I Actions to be taken at pointcuts

8 / 21



Wrapper — Properties

Properties as AspectJ aspects

I 1 property = 1 aspect
I 1 aspect = multiple pointcuts and advices

Pointcuts
I Where are interesting points of execution in

AutoResolver?
I Points in wrapper itself

Advices
I Actions to be taken at pointcuts

8 / 21



AspectJ Example

pointcut callAR(AacTestWrapper wrapper):
call(public ArrayList conflictDetectResolve()) &&
target(wrapper) &&
!cflow(myAspect()) &&
!cflow(callFlyForMethod(*, *)) &&
if(isEnabled);

after(AacTestWrapper wrapper): callAR(wrapper) {
for (t = 60.0; t <= 480.0; t += 60.0) {

AacTestWrapper w = wrapper.flyFor(t);
w.conflictDetectResolve();

}
}

9 / 21



Runtime Verification

I Verification at
runtime

I Need for good
runtime drivers

I Test cases

“Testing shows the presence,
not the absence of bugs.” — Dijkstra

10 / 21



Runtime Verification

I Verification at
runtime

I Need for good
runtime drivers

I Test cases

“Testing shows the presence,
not the absence of bugs.” — Dijkstra

10 / 21



Runtime Verification

I Verification at
runtime

I Need for good
runtime drivers

I Test cases

“Testing shows the presence,
not the absence of bugs.” — Dijkstra

10 / 21



Test-Case Generation

I Arbitrary many conflicts

I Secondary conflicts — challenging to create
I Time dimension added at runtime

11 / 21



Test-Case Generation

I Arbitrary many conflicts
I Secondary conflicts — challenging to create

I Time dimension added at runtime

11 / 21



Test-Case Generation

I Arbitrary many conflicts
I Secondary conflicts — challenging to create
I Time dimension added at runtime

11 / 21



Generating Secondary Conflicts

I Secondary conflicts: created along a resolution trajectory

Extend black-box test cases through reflection and
with runtime verification

T2T1 T ′
1 T2 T2T ′

1

T3

12 / 21



Generating Secondary Conflicts

I Secondary conflicts: created along a resolution trajectory

Extend black-box test cases through reflection and
with runtime verification

T2T1 T ′
1 T2 T2T ′

1

T3

12 / 21



Generating Secondary Conflicts

I Secondary conflicts: created along a resolution trajectory

Extend black-box test cases through reflection and
with runtime verification

T2T1 T ′
1 T2 T2T ′

1

T3

12 / 21



Test Case — Example

public void test0() throws Throwable {

AacTestWrapper wrapper = new AacTestWrapper();

wrapper.setUpCR(CR_parameters1);
wrapper.setUpCL(CL_parameters2);
wrapper.setUpCR(CR_parameters3);

wrapper.conflictDetectResolve();
}

13 / 21



Evaluation

I Test suite of 3.5 million test cases
I Each test case with about 5 conflicts

I Every test case executed at 9 different time points
I Fly all aircraft for some time and then call AutoResolver
I Effectively: 3.5 million · 9 = 31.5 million test cases

I Check if every requirement is exercised
I Second-level monitors

14 / 21



Results — Property P1

There should be a resolution for every conflict.

I It does not hold, but this is not a bug
I AutoResolver does not resolve conflicts that:

I involve aircraft already in violation
I happen earlier than a predetermined time limit (1 minute)
I happen later than a predetermined time limit (8 minutes)
I “Neither plane able to maneuver/neither plane able to be

unfrozen” (current resolution round)

15 / 21



Results — Property P1

There should be a resolution for every conflict.

I It does not hold, but this is not a bug
I AutoResolver does not resolve conflicts that:

I involve aircraft already in violation
I happen earlier than a predetermined time limit (1 minute)
I happen later than a predetermined time limit (8 minutes)
I “Neither plane able to maneuver/neither plane able to be

unfrozen” (current resolution round)

15 / 21



Results — Property P2

Initial conflicts are resolved in the non-decreasing
order of their first time to loss of separation.

I No violation found

16 / 21



Results — Property P2

Initial conflicts are resolved in the non-decreasing
order of their first time to loss of separation.

I No violation found

16 / 21



Results — Property P3

New conflicts arising as a result of conflict resolution
should be inserted into the list of conflicts according

to their first loss of separation time.

I No violation found
I No test case that exercises respective parts of code

I Second-level monitor
I Need support for weather conflict type

17 / 21



Results — Property P3

New conflicts arising as a result of conflict resolution
should be inserted into the list of conflicts according

to their first loss of separation time.

I No violation found
I No test case that exercises respective parts of code

I Second-level monitor
I Need support for weather conflict type

17 / 21



Results — Property P4

No picked resolution is allowed to cause a more
imminent secondary conflict.

I No violation found
I Several test cases used to indicate violation (bug found

in wrapper)

18 / 21



Results — Property P4

No picked resolution is allowed to cause a more
imminent secondary conflict.

I No violation found
I Several test cases used to indicate violation (bug found

in wrapper)

18 / 21



Results — Resolution Monitor M1

For each conflict, report its resolution type
and how it changes over time.

ttlos [s] Delay time [s] Res type
430.0 0.0 26
370.0 60.0 26
310.0 120.0 26
250.0 180.0 26
190.0 240.0 26
130.0 300.0 13
70.0 360.0 13
10.0 420.0 not resolved
0.0 480.0 not resolved

19 / 21



Results — Resolution Monitor M1

For each conflict, report its resolution type
and how it changes over time.

ttlos [s] Delay time [s] Res type
430.0 0.0 26
370.0 60.0 26
310.0 120.0 26
250.0 180.0 26
190.0 240.0 26
130.0 300.0 13
70.0 360.0 13
10.0 420.0 not resolved
0.0 480.0 not resolved

19 / 21



Results — Resolution Monitor M1 — Continued

No-conflict window?

ttlos [s] Delay time [s] Res type
445.0 0.0 3

— 60.0 —
— 120.0 —

265.0 180.0 3
205.0 240.0 3
145.0 300.0 3
85.0 360.0 3
25.0 420.0 not resolved
0.0 480.0 not resolved

20 / 21



Summary

I Light-weight verification of aircraft separation assurance
software

I Runtime verification for test-case generation
I Test-case generation for runtime verification

Credits
I Crossroads — Umberto Nicoletti
I This presentation — Marko Dimjašević, CC-BY-SA 4.0

21 / 21



Summary

I Light-weight verification of aircraft separation assurance
software

I Runtime verification for test-case generation
I Test-case generation for runtime verification

Credits
I Crossroads — Umberto Nicoletti
I This presentation — Marko Dimjašević, CC-BY-SA 4.0

21 / 21


