
Systematic Execution of 
Android Test Suites in Adverse Conditions
Christoffer Quist Adamsen, Gianluca Mezzetti, Anders Møller

Aarhus University, Denmark

ISSTA 2015, Baltimore, Maryland

 / 24

Motivation
• Mobile apps are difficult to test thoroughly

• Fully automated testing tools:

• capable of exploring the state space systematically

• no knowledge of the intended behaviour

• Manually written test suites widely used in practice

• app largely remains untested in presence of common
events

2

 / 24

Goal

Improve manual testing under adverse conditions

1. Increase bug detection as much as possible

2. Run test suite without significant slowdown

3. Provide precise error messages

3

 / 24

Methodology for testing
• Systematically expose each test to adverse conditions,

where unexpected events may occur during execution

• Which unexpected events does it make sense to
systematically inject?

4

 / 24

Neutral event sequences
• An event sequence n is neutral if injecting n 

during a test t is not expected to affect the outcome of t

• We suggest a general collection of useful neutral event
sequences that e.g. stress the life-cycle of Android apps

• Pause → Resume
• Pause → Stop → Restart
• Pause → Stop → Destroy → Create
• Audio focus loss → Audio focus gain
• …

5

 / 24

public void testDeleteCurrentProject() {  
 createProjects();  
 clickOnButton("Programs");  
 longClickOnTextInList(DEFAULT_PROJECT);  
 clickOnText("Delete");  
 clickOnText("Yes");  
 assertFalse("project still visible",  
 searchText(DEFAULT_PROJECT);  
 …  
}

Example

6

In
jec

tio
n

po
int

s

Execute each neutral event sequence
at each injection point

 / 24

public void testDeleteCurrentProject() {  
 createProjects();  
 clickOnButton("Programs");  
 longClickOnTextInList(DEFAULT_PROJECT);  
 clickOnText("Delete");  
 clickOnText("Yes");  
 assertFalse("project still visible",  
 searchText(DEFAULT_PROJECT);  
 …  
}

Example

6

In
jec

tio
n

po
int

s

 / 24

Example

7

 / 24

public void testDeleteCurrentProject() {  
 createProjects();  
 clickOnButton("Programs");  
 longClickOnTextInList(DEFAULT_PROJECT);  
 clickOnText("Delete");  
 clickOnText("Yes");  
 assertFalse("project still visible",  
 searchText(DEFAULT_PROJECT);  
 …  
}

Example

8

In
jec

tio
n

po
int

s

Strategy may be
too aggressive

 / 24

Hypothesis for aggressive injection strategy

Few additional errors will be detected by:

• injecting a subset of the neutral event sequences, and

• using only a subset of the injection points

9

 / 24

Example
public void testDeleteCurrentProject() {  
 createProjects();  
 clickOnButton("Programs");  
 longClickOnTextInList(DEFAULT_PROJECT);  
 clickOnText("Delete");  
 clickOnText("Yes");  
 assertFalse("project still visible",  
 searchText(DEFAULT_PROJECT);  
 …  
}

Failure potentially 
shadows others

…

In
jec

tio
n

po
int

s

10

 / 24

Evaluating the error detection capabilities
• Empirical study using our implementation Thor  

on 4 open-source Android apps (with a total of 507 tests)

• To what extent is it possible to trigger failures 
in existing test suites by injecting unexpected events?

• 429 tests of a total of 507 fail in adverse conditions!

• 1770 test failures counted as distinct failing assertions  
(none of which appear during ordinary test execution)

11

 / 24

Logical UI

App Crash Silent fail Not
persisted

User
setting lost

Element
disappears

Pocket
Code 1 (9) 7 (42) 1 (6)

…

14 (104)

…

Pocket
Paint 2 (45) 1 (4) 4 (42) 9 (131)

Car Cast 1 (7) 5 (18)

AnyMemo 4 (15)

Evaluating the error detection capabilities
• Manual classification of 682 of the 1770 test failures  

revealed 66 distinct problems

12
#distinct problems (#error messages)

 / 24

Logical UI

App Crash Silent fail Not
persisted

User
setting lost

Element
disappears

Pocket
Code 1 (9) 7 (42) 1 (6)

…

14 (104)

…

Pocket
Paint 2 (45) 1 (4) 4 (42) 9 (131)

Car Cast 1 (7) 5 (18)

AnyMemo 4 (15)

Evaluating the error detection capabilities
• Manual classification of 682 of the 1770 test failures  

revealed 66 distinct problems

12

Only 4 of 22 distinct bugs that  
damage the user experience are crashes

 / 24

Logical UI

App Crash Silent fail Not
persisted

User
setting lost

Element
disappears

Pocket
Code 1 (9) 7 (42) 1 (6)

…

14 (104)

…

Pocket
Paint 2 (45) 1 (4) 4 (42) 9 (131)

Car Cast 1 (7) 5 (18)

AnyMemo 4 (15)

Evaluating the error detection capabilities
• Manual classification of 682 of the 1770 test failures  

revealed 66 distinct problems
Failures dominated 

by UI glitches

12

 / 24

App

Strategy AnyMemo Car Cast Pocket Code Pocket Paint

Basic 1.05x 1.21x 1.38x 0.99x

Evaluating the execution time
• Competitive to ordinary test executions

13

 / 24

App

Strategy AnyMemo Car Cast Pocket Code Pocket Paint

Basic 1.05x 1.21x 1.38x 0.99x

Rerun 2.11x 3.09x 4.70x 3.70x

Evaluating the execution time
• Competitive to ordinary test executions

13

 / 24

Summary of evaluation
• Successfully increases the error detection capabilities!

• App crashes are only the tip of the iceberg

• Small overhead when not rerunning tests

 / 24

Goal, revisited

Improve manual testing under adverse conditions

1. Increase bug detection as much as possible

2. Run test suite without significant slowdown

3. Provide precise error messages

15

 / 24

Problems with rerunning tests
• Rerunning tests to identify additional bugs is expensive

• More assertion failures or app crashes 
do not necessarily reveal any additional bugs

• For example, the following tests from Pocket Code  
check similar use cases to testDeleteCurrentProject():
• testDeleteProject()
• testDeleteProjectViaActionBar()
• testDeleteProjectsWithSpecialChars()
• testDeleteStandardProject()
• testDeleteAllProjects()
• testDeleteManyProjects()

16

 / 24

Heuristic for reducing redundancy
• During test execution, build a cache of abstract states

• Omit injecting n in abstract state s after event e, 
if (n, s, e) already appears in the cache

17

 / 24

Evaluating the redundancy reduction
• The redundancy reduction improves performance and

results in fewer duplicate error messages!

• Case study on Pocket Paint:

• Execution time reduces from 2h 48m to 1h 32m

• 79% less error messages

• 14 of the 17 distinct problems spotted

18

 / 24

Goal, revisited

Improve manual testing under adverse conditions

1. Increase bug detection as much as possible

2. Run test suite without significant slowdown

3. Provide precise error messages

19

 / 24

Isolating the causes of failures
• Since multiple injections are performed in each test, 

it may be unclear which injection causes the failure

20

 / 24

Hypothesis for failure isolation

Most errors can be found by:

• injecting only one neutral event sequence, and

• using only one injection point

21

 / 24

Isolating the causes of failures

For failing tests, apply a simple variant of delta debugging:

1. Identify a neutral event sequence n to blame 
Do a binary search on the neutral event sequences
(keeping the injection points fixed)

2. Identify the injection point to blame 
Do a binary search on the sequence of injection points  
(injecting only n)

22

 / 24

Evaluating the failure isolation

Failure isolation works!

• Applied the failure isolation to all 429 failing tests

• Successfully blamed a single neutral event sequence
and injection point for all 429 except 5 failures

23

 / 24

Conclusion
• Light-weight methodology for improving 

the bug detection capabilities of existing test suites

• Key idea: Systematically inject neutral event sequences

• Evaluation shows:
• can detect many app-specific bugs
• small overhead
• precise error messages

• http://brics.dk/thor
24

http://brics.dk/thor

