An Analysis of Patch Plausibility and
Correctness of Generate-And-
Validate Patch Generation System

Zichao Qj, Fan Long, Sara Achour, and
Martin Rinard

MIT CSAIL

Generate-And-Validate Patch Generation Systems

Candidate patch space

Test suite of test cases \/

Generate-And-Validate Patch Generation Systems

* GenProg — Genetic Programming

1. C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of
automated program repair: Fixing 55 out of 105 bugs for S8 each. ICSE 2012

2. W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding
patches using genetic programming. ICSE 2009

3. S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues A genetic programming
approach to automated software repair. GECCO 2009

4. C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog A generic
method for automatic software repair. Software Engineering, IEEE
Transactions on 38(1), 2012

 AE - Adaptive Search

1. W. Weimer, Z. P. Fry, and S. Forrest Leveraging program equivalence for
adaptive program repair: Models and first results. ASE 2013

* RSRepair — Random Search

1. Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of random search on
automated program repair. ICSE 2014

All of them report impressive results

Benchmark
Defects 105 105 24
Reported 55 54 24

Fixed Defects

* Patches generated by these systems

are different from human written patch
* No systematic analysis £ i

We analyze the reported patches for these systems

Plausible?
Produce correct outputs for all
test cases in the test suite

All generated patches should
be plausible

Plausibility

Benchmark

Defects 105 105 24
Reported

Fixed Defects 55 54 24
Defects With 18 7 10

Plausible Patches

* Reason - Weak Proxy
— Patch evaluation does not check for correct output
— php, libtiff — check exit code, not output
— Accepted php patch: main(1 exit(0); }

Analysis of the reported patches for these systems

Plausible?
Produce correct outputs for all Correct?
test cases in the test suite Eliminate the defect

Majority of the patches are Passing test suite != correctness
not plausible

Correctness

cenchmark 105 105 24
oo Defects 55 54 24
I[:I:\f:s,ci:osle“;:'z:hes 18 27 10
Defects With) 3 2

Correct Patches

Developed new test cases that expose defects for all
plausible but incorrect patches

GenProg Statistics

2 Correct

W 16 Plausible but
Incorrect

37 Implausible

Stronger Test Suites?
Will GenProg generate
correct patches given new
test cases that eliminate
incorrect patches?

Fixed Test Scripts?
Will GenProg generate
plausible patches given fixed
patch evaluation scripts?

Analysis of the reported patches for these systems

Plausible?
Produce correct outputs for all
test cases in the test suite

Correct?
Eliminate the defect

The overwhelming majority of
the patches are not correct

Majority of the patches are
not plausible

Do stronger test suites help?

Rerun GenProg with
fixed patch evaluation scripts
and new test cases that
eliminate incorrect patches

Reexecution of GenProg on Remaining 103
Defects

First Reexecution
Fixed patch evaluation

Second Reexecution
2 additional test cases

New test cases
Patches for 2 defects

Why?

Developer patches are not in GenProg search space

GenProg search space may not contain any correct
patch for these 103 defects

May need richer search space to generate correct
patches

Bottom Line For GenProg

* Rerun GenProg with
— Fixed test scripts
— Stronger test suites

 GenProg generates patches for only 2 of 105
defects (both patches are correct)

Examples of Correct GenProg Patch(1/2)

Developer GenProg

26 p~—>tm_year = y - 1900;
27 p->tm_mon--;
28 p—>tm_wday = (p—>tm_wday + 1) % 7;

= W =

L & =1 O O

10
11

Examples of Correct GenProg Patch(2/2)

Developer GenProg

) 1 if (offset >= (long)si_len) {
if (offset >= s1_len) { 2 php_error_docrefO((char const *)((void
php_error_docref (NU‘LL TSRMLS 3 "ITll}; szﬁt{position cannot exceed initisa
"The start position cannot e :) i_:___i - return_value;
RETURN_FALSE; 6 __2Z___1->value.lval = OL;
} 7 __2z___1->type = (unsigned char)3;
8 break;
9 }
-if (len > si_len - offset) { 10 return;
11 } else {

- len = sl1_len - offset;

-}

=
N

}

if (len > (long)si_len - offset) {
len = (long)si_len - offset;

} else {

e
15 B~
[|

cmp_len = (uint) (len 7 len : MAX(s2

-
N o
|

}
if (len) {
tmp___1 = len;
} else {
if ((long)s2_len > (long)si_len - offs

NN N e e
N = © © ®
|

23 tmp___0 = (long)s2_len;

24 } else {

25 tmp___0 = (long)si_len - offset;
26 }

27 tmp___1 = tmp___0;

}
cmp_len = (unsigned int)tmp___1;

NN
© ®

All Correct Patches Simply Delete
Code

Semantic Analysis

* Analyze all the plausible patches
 Determine if patch is equivalent to single
functionality deletion modification
* Results
— GenProg: 14/18
— AE: 22/27
— RSRepair: 8/10

We found a common scenario

* A negative test case exposes the defect
— Feature is otherwise unexercised
— The patch simply deletes the functionality

* Introduces new security vulnerabilities
(buffer overflows)

 Disables critical functionality
(gzip cannot decompress non-zero files)

* Weak test suites
— May be appropriate for human developers

— May not be appropriate for automatic patch generation
systems (at least not by themselves)

If all these patches simply delete
functionality

Why not build a patch
generation system that ONLY
deletes functionality?

We present Kali
 Automatic patch generation system

* Consider the search space that consists of only
patches that remove functionality

Experimental Results of Kali

Benchmark
et 105 105 24 105
Reported 55 54 24

Fixed Defects

Defects With
Plausible Patches

18 27 10 27

Defects With
Correct Patches 2 3 2 3

e Kaliis as good as previous systems
— Much simpler
— Not need to know the source code file to repair

* Can pinpoint the defective code
e Can provide insight into important defect characteristics.

Experimental Results of Kali

oetects 105 105 24 105
o befects 55 54 24
Elzf:s;?levg:::;hes 18 27 10 27
Defects With 5 ; , X

Correct Patches

Is Automatic Patch Generation A
Total Failure?

NO!

Path To Success

* Richer search spaces
* More efficient search algorithms

* |Incorporate additional sources of information
— Correct code from other applications
— Learned characteristics of human patches
— Learned invariants
— Specifications

Promising directions

e |earn invariant from correct execution

ClearView: J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J.
Bachrach, M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G.
Sullivan, et al. Automatically patching errors in deployed
software. SOSP 2009.

Patches security vulnerabilities in 9 of 10 defects
At least 4 patches are correct

e Solvers

NOPOL: F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus.
Automatic repair of buggy if conditions and missing
preconditions with smt CSTVA 2014

SemFix: H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S.
Chandra. Semfix: Program repair via semantic analysis. ICSE
2013

Promising directions

e Specifications

e Autofix-E: Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Andreas Zeller,
and Bertrand Meyer. Automated Fixing of Programs with Contracts.
IEEE Transactions on Software Engineering, 2014.

e Etienne Kneuss, Manos Koukoutos and Viktor Kuncak. Deductive
Program Repair. CAV 2015

 Correctness evaluation

e Thomas Durieux, Matias Martinez, Martin Monperrus, Romain
Sommerard, Jifeng Xuan. Automatic Repair of Real Bugs: An
Experience Report on the Defects4) Dataset. Technical report
1505.07002, Arxiv, 2015

* Code from another application

 CodePhage: S. Sidiroglou, E. Lahtinen, F. Long, and M. Rinard.

Automatic error elimination by multi-application code transfer. PLDI
2015

Promising Directions

SPR Prophet
Staged condition Learn from
synthesis successful patches
Benchmark
Defects 105 105
Defects With
Plausible Patches 41 42
Defects With
11 15

Correct Patches

SPR: F. Long and M. Rinard. Staged program repair in SPR. To appear
in ESEC-FSE 2015

Prophet: F. Long and M. Rinard. Prophet: Automatic patch generation
via learning from successful human patches. Under submission

Take Aways

* Facts about GenProg/AE/RSRepair
— These systems fix 2/3/2 of 105 bugs (not 55/54/24)
— Errors in test scripts and weak test suites
— Fixed test scripts and stronger test suites do not help
* Paths to success
— Richer search spaces
— More efficient search algorithms

— Incorporate additional sources of information
* Correct code from other applications (CodePhage)

e Learned characteristics of human patches (Prophet)
* Learned invariants (ClearView)

* Specifications (AutoFixE, Deductive Repair)

Summary

e Evaluation of GenProg, AE and RSRepair
— Incorrect results
— Equivalent to functionality elimination
— Stronger test suites do not help
e Kali
— Functionality elimination system
— Help developer better understand the bug

Path to Success for the automatic patch
generation systems

* Richer search spaces
* More efficient search algorithms

* [ncorporate additional sources of information
— Correct code from other applications
— Learned characteristics of human patches
— Learned invariants
e Better patch evaluation
— Correctness
— Understand the negative effects

Questions?

