Automated Software Transplantation

Earl T. Barr Mark Harman Yue Jia Alexandru Marginean Justyna Petke

CREST, University College London
Why

Alexandru Marginean — Automated Software Transplantation
Related Work

Clone Detection
Feature Location
In-Situ Code Reuse

Code Migration
Code Salvaging
Synchronising Manual Transplants

Dependence Analysis
Feature Extraction
Automatic Replay Copy-Paste

Automated Error Fixing
Manual Code Transplants
In-Situ Code Reuse

Alexandru Marginean — Automated Software Transplantation
Related Work

Miles *et al.*: In situ reuse of logically extracted functional components

In-Situ Code Reusual

Debugger

Binary Organ

Running Program
Related Work

Sidiroglou-Douskos et al.: Automatic Error Elimination by Multi-Application Code Transfer

Automatic Error Fixing

Host

Donors
Related Work

Autotransplantation
Human Organ Transplantation

Alexandru Marginean — Automated Software Transplantation
Automated Software Transplantation

Manual Work:
- Organ Entry
- Organ’s Test Suite
- Implantation Point

Donor
- ENTRY
- Organ

Host

Organ’s Test Suite

Alexandru Marginean — Automated Software Transplantation
μTrans

Stage 1: Static Analysis
Stage 2: Genetic Programming
Stage 3: Organ Implantation

Host
Donor

Organ’s Test Suite
Host Beneficiary
Stage 1 — Static Analysis

Donor

ENTRY

Vein

Organ

OE

Matching Table

Dependency Graph

Donor: int X -> Host: int A, B, C

Implantation Point

H

Alexandru Marginean — Automated Software Transplantation
Stage 2 — GP

Algorithm 1

with a probability of 0.5. We define two custom, crossover

vectors, but convergence was too slow. Adopting union sped

ventional fixed-point crossover on organ and vein statements

variables used in donor at

generates new individuals. At the end of evolution, an organ

reproduction. Parents must be compilable; if the proportion

statement, weighted by the frequency of that statement's

addition and replacement operations, one for each unique

statement. In essence, the over-organ defines a large set of

replace, it overwrites the statement at

index into the over-organ's statement array. To add, it inserts

list. When adding or replacing, it first uniformly selects a

First, it uniformly picks

operator selects it, the resulting individual will be more fit.

. . . ' . The correct mapping is

organ test suite. Say the remap operator chooses to remap

not a valid array length in

our running example, say an individual currently maps the

to its parameters with a type compatible alternative. In

replaces a binding in the organ's map from host variables

parents. The use of union here is novel. Initially, we used con-

its parents' and whose

only one o

rately applied to the organ's map from host variables to organ

organ's parameters. We then uniformly select one statement

Input

choose

P

returns an element from a set uniformly at random.

S

p

D

O

H

µ

hit_eof

idct

V

V

V

V

S

S

S

V

V

V

V

S

S

S

...
Research Questions

- RQ1: Do we break the initial functionality?
- RQ2: Have we really added new functionality?
- RQ3: How about the computational effort?
- RQ4: Is autotransplantation useful?
Research Questions

RQ1: Do we break the initial functionality?

RQ2: Have we really added new functionality?

RQ3: How about the computational effort?

RQ4: Is autotransplantation useful?

Empirical Study

15 Transplantations
300 Runs
5 Donors
3 Hosts

Case Study:

H.264 Encoding Transplantation

Alexandru Marginean — Automated Software Transplantation
Subjects

- Minimal size: 0.4k;
- Max size: 422k;
- Average Donor: 16k;
- Average Host: 213k;

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Type</th>
<th>Size KLOC</th>
<th>Reg. Tests</th>
<th>Organ Test Suite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idct</td>
<td>Donor</td>
<td>2.3</td>
<td>-</td>
<td>3-5</td>
</tr>
<tr>
<td>Mytar</td>
<td>Donor</td>
<td>0.4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Cflow</td>
<td>Donor</td>
<td>25</td>
<td>-</td>
<td>6-20</td>
</tr>
<tr>
<td>Webserver</td>
<td>Donor</td>
<td>1.7</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>TuxCrypt</td>
<td>Donor</td>
<td>2.7</td>
<td>-</td>
<td>4-5</td>
</tr>
<tr>
<td>Pidgin</td>
<td>Host</td>
<td>363</td>
<td>88</td>
<td>-</td>
</tr>
<tr>
<td>Cflow</td>
<td>Host</td>
<td>25</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>SoX</td>
<td>Host</td>
<td>43</td>
<td>157</td>
<td>-</td>
</tr>
<tr>
<td>x264</td>
<td>Donor</td>
<td>63</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>VLC</td>
<td>Host</td>
<td>422</td>
<td>27</td>
<td>-</td>
</tr>
</tbody>
</table>
Experimental Methodology and Setup

Count LOC CLOC

Host
Implantation Point

Donor
OE

Validation Test Suites
Coverage Information: Gcov

Organ’s Test Suite

x 20
GNU Time

Ubuntu 14.10, 16 GB Ram
8 threads

Alexandru Marginean — Automated Software Transplantation
Empirical Study

RQ1,2

<table>
<thead>
<tr>
<th>Donor</th>
<th>Host</th>
<th>All Passed</th>
<th>Regression</th>
<th>Regression++</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idct</td>
<td>Pidgin</td>
<td>16</td>
<td>20</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Mytar</td>
<td>Pidgin</td>
<td>16</td>
<td>20</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Web</td>
<td>Pidgin</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Cflow</td>
<td>Pidgin</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Tux</td>
<td>Pidgin</td>
<td>15</td>
<td>20</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Idct</td>
<td>Cflow</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Mytar</td>
<td>Cflow</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Web</td>
<td>Cflow</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Cflow</td>
<td>Cflow</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Tux</td>
<td>Cflow</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Idct</td>
<td>SoX</td>
<td>15</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Mytar</td>
<td>SoX</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Web</td>
<td>SoX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Cflow</td>
<td>SoX</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Tux</td>
<td>SoX</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

TOTAL

- **Passed**: 188/300
- **Regression**: 233/300
- **Regression++**: 196/300
- **Acceptance**: 256/300

UCL

Alexandru Marginean — Automated Software Transplantation
Empirical Study

RQ3

Timing Information

<table>
<thead>
<tr>
<th>Donor</th>
<th>Host</th>
<th>Average</th>
<th>Std. Dev.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idct</td>
<td>Pidgin</td>
<td>5</td>
<td>7</td>
<td>97</td>
</tr>
<tr>
<td>Mytar</td>
<td>Pidgin</td>
<td>3</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>Web</td>
<td>Pidgin</td>
<td>8</td>
<td>5</td>
<td>160</td>
</tr>
<tr>
<td>Cflow</td>
<td>Pidgin</td>
<td>58</td>
<td>16</td>
<td>1151</td>
</tr>
<tr>
<td>Tux</td>
<td>Pidgin</td>
<td>29</td>
<td>10</td>
<td>574</td>
</tr>
<tr>
<td>Idct</td>
<td>Cflow</td>
<td>3</td>
<td>5</td>
<td>59</td>
</tr>
<tr>
<td>Mytar</td>
<td>Cflow</td>
<td>3</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>Web</td>
<td>Cflow</td>
<td>5</td>
<td>2</td>
<td>102</td>
</tr>
<tr>
<td>Cflow</td>
<td>Cflow</td>
<td>44</td>
<td>9</td>
<td>872</td>
</tr>
<tr>
<td>Tux</td>
<td>Cflow</td>
<td>31</td>
<td>11</td>
<td>623</td>
</tr>
<tr>
<td>Idct</td>
<td>SoX</td>
<td>12</td>
<td>17</td>
<td>233</td>
</tr>
<tr>
<td>Mytar</td>
<td>SoX</td>
<td>3</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>Web</td>
<td>SoX</td>
<td>7</td>
<td>3</td>
<td>132</td>
</tr>
<tr>
<td>Cflow</td>
<td>SoX</td>
<td>89</td>
<td>53</td>
<td>74</td>
</tr>
<tr>
<td>Tux</td>
<td>SoX</td>
<td>34</td>
<td>13</td>
<td>94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>334 (min)</th>
<th>10 (Average)</th>
<th>72 (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case Study

RQ4

MSU Sixth MPEG-4 AVC/H.264 Video Codecs Comparison, with ~24% better encoding than second place.

Doom9's 2005 Codec Shoot-Out

Second Annual MSU MPEG-4 AVC/ H.264 Codecs Comparison

<table>
<thead>
<tr>
<th>Test Suites</th>
<th>Regression+Acceptance</th>
</tr>
</thead>
</table>
| H.264 | 100% | 100%
Validation

Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Type</th>
<th>Size (KLOC)</th>
<th>Reg. Tests</th>
<th>Organ Test Suite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idct</td>
<td>Donor</td>
<td>2.3</td>
<td>-</td>
<td>3-5</td>
</tr>
<tr>
<td>Mytar</td>
<td>Donor</td>
<td>0.4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Cflow</td>
<td>Donor</td>
<td>25</td>
<td>-</td>
<td>6-20</td>
</tr>
<tr>
<td>Webserver</td>
<td>Donor</td>
<td>1.7</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>TuxCrypt</td>
<td>Donor</td>
<td>2.7</td>
<td>-</td>
<td>4-5</td>
</tr>
<tr>
<td>Pidgin</td>
<td>Host</td>
<td>363</td>
<td>88</td>
<td>-</td>
</tr>
<tr>
<td>Cflow</td>
<td>Host</td>
<td>25</td>
<td>21</td>
<td>16k</td>
</tr>
<tr>
<td>SoX</td>
<td>Host</td>
<td>43</td>
<td>157</td>
<td>213k</td>
</tr>
<tr>
<td>Case Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Minimal size:** 0.4k;
- **Max size:** 422k;
- **Average Donor:** 16k;
- **Average Host:** 213k;