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Algorithm 1 Generate the initial population P ; the function
choose returns an element from a set uniformly at random.
Input V , the organ vein; SD, the donor symbol table; OM , the host

type-to-variable map; Sp, the size of population; v, statements in
individual; m, mappings in individual.

1: P := ;
2: for i := 1 to Sp do

3: m, v := ;, ;
4: for all sd 2 SD do

5: sh := choose(OM [sd])
6: m := m [ {sd ! sh}
7: v := { choose(V ) }
8: P := P [ {(m, v)}
9: return P

variables used in donor at LO. For each individual, Alg. 1 first
uniformly selects a type compatible binding from the host’s
variables in scope at the implantation point to each of the
organ’s parameters. We then uniformly select one statement
from the organ, including its vein, and add it to the individual.
The GP system records which statements have been selected
and favours statements that have not yet been selected.

Search Operators During GP, µTrans applies crossover
with a probability of 0.5. We define two custom, crossover
operators: fixed-two-points and uniform crossover. The fixed-
two-points crossover is the standard fixed-point operator sepa-
rately applied to the organ’s map from host variables to organ
parameters and the statement vector, restricted to each vec-
tor’s centre point. The uniform crossover operator produces
only one o↵spring, whose host to organ map is the crossover of
its parents’ and whose V and O statements are the union of its
parents. The use of union here is novel. Initially, we used con-
ventional fixed-point crossover on organ and vein statements
vectors, but convergence was too slow. Adopting union sped
convergence, as desired. Fig. 4 shows an example of applying
the crossover operators on the two individuals on the left.
After crossover, one of the two mutation operators is ap-

plied with a probability of 0.5. The first operator uniformly
replaces a binding in the organ’s map from host variables
to its parameters with a type compatible alternative. In
our running example, say an individual currently maps the
host variable curs to its N_init parameter. Since curs is
not a valid array length in idct, the individual fails the
organ test suite. Say the remap operator chooses to remap
N_init. Since its type is int, the remap operator selects a
new variable from among the int variables in scope at the
insertion point, which include ‘hit_eof, curs, tos, length,
. . . ’ . The correct mapping is N_list to length; if the remap
operator selects it, the resulting individual will be more fit.

The second operator mutates the statements of the organ.
First, it uniformly picks t, an o↵set into the organ’s statement
list. When adding or replacing, it first uniformly selects a
index into the over-organ’s statement array. To add, it inserts
the selected statement at t in the organ’s statement list; to
replace, it overwrites the statement at t with the selected
statement. In essence, the over-organ defines a large set of
addition and replacement operations, one for each unique
statement, weighted by the frequency of that statement’s
appearance in the over-organ. Fig. 5 shows an example of
applying µTrans’s mutation operators.

At each generation, we select top 10% most fit individuals
(i.e. elitism) and insert them into the new generation. We
use tournament selection to select 60% of the population for
reproduction. Parents must be compilable; if the proportion
of possible parents is less than 60% of the population, Alg. 1
generates new individuals. At the end of evolution, an organ

that passes all the tests is selected uniformly at random and
inserted into the host at Hl.

Fitness Function Let IC be the set of individuals that
can be compiled. Let T be the set of unit tests used in GP,
TXi and TPi be the set of non-crashed tests and passed tests
for the individual i respectively. Our fitness function follows:

fitness(i) =

(
1
3 (1 +

|TXi|
|T | + |TPi|

|T | ) i 2 IC

0 i /2 IC
(1)

For the autotransplantation goal, a viable candidate must,
at a minimum, compile. At the other extreme, a successful
candidate passes all of the TO

D , the developer-provided test
suite that defines the functionality we seek to transplant.
These poles form a continuum. In between fall those individ-
uals who execute tests to termination, even if they fail. Our
fitness function therefore contains three equally-weighted
fitness components. The first checks whether the individual
compiles properly. The second rewards an individual for
executing test cases to termination without crashing and last
rewards an individual for passing tests in TO

D .

Implementation Implemented in TXL and C, µScalpel
realizes µTrans and comprises 28k SLoCs, of which 16k is
TXL [17], and 12k is C code. µScalpel inherits the limita-
tions of TXL, such as its stack limit which precludes parsing
large programs and its default C grammar’s inability to prop-
erly handle preprocessor directives. As an optimisation we
inline all the function calls in the organ. Inlining eases slice
reduction, eliminating unneeded parameters, returns and
aliasing. For the construction of the call graphs, we use GNU
cflow, and inherit its limitations related to function pointers.

5. EMPIRICAL STUDY
This section explains the subjects, test suites, and research

questions we address in our empirical evaluation of automated
code transplantation as realized in our tool, µScalpel.

Subjects We transplant code for five donors into three hosts.
We used the following criteria to choose these programs. First,
they had to be written in C, because µScalpel currently
operates only on C programs. Second, they had to be popular
real-world programs people use. Third, they had to be diverse.
Fourth, the host is the system we seek to augment, so it had to
be large and complex to present a significant transplantation
challenge, while, fifth, the organ we transplant could come
from anywhere, so donors had to reflect a wide range of sizes.
To meet these constraints, we perused GitHub, SourceForge,
and GNU Savannah in August 2014, restricting our attention
to popular C projects in di↵erent application domains.

Presented in Tab. 1, our donors include the audio stream-
ing client IDCT, the simple archive utility MYTAR, GNU
Cflow (which extracts call graphs from C source code), Web-
server3 (which handles HTTP requests), the command line
encryption utility TuxCrypt, and the H.264 codec x264. Our
hosts include Pidgin, GNU Cflow (which we use as both a
donor and a host), SOX, a cross-platform command line au-
dio processing utility, and VLC, a media player. We use x264
and VLC in our case study in Sec. 7; we use the rest in Sec. 6.
These programs are diverse: their application domains

span chat, static analysis, sound processing, audio streaming,
archiving, encryption, and a web server. The donors vary in
size from 0.4–63k SLoC and the hosts are large, all greater
3https://github.com/Hepia/webserver.
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Research QuestionsRQ1: Do we break the initial 
functionality?

RQ3: How about the 
computational effort?

RQ4: Is autotransplantation 
useful?

RQ2: Have we really added 
new functionality?

Empirical Study 
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300 Runs 
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3 Hosts
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Subjects Type Size 
KLOC

Reg. 
Tests

Organ 
Test Suite

Idct Donor 2.3 - 3-5
Mytar Donor 0.4 - 4
Cflow Donor 25 - 6-20

Webserver Donor 1.7 - 3
TuxCrypt Donor 2.7 - 4-5

Pidgin Host 363 88 -
Cflow Host 25 21 -
SoX Host 43 157 -

Case Study
x264 Donor 63 - 5
VLC Host 422 27 -

Subjects

• Minimal size: 
0.4k; 

• Max size: 422k; 

• Average Donor:
16k; 

• Average Host: 
213k;
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ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification
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Random testing, Test generation, Diversity
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1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.
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All Test Suites
Donor Host Passed Regression Regression++ Acceptance
Idct Pidgin 16 20 17 16

Mytar Pidgin 16 20 18 20
Web Pidgin 0 20 0 18
Cflow Pidgin 15 20 15 16
Tux Pidgin 15 20 17 16
Idct Cflow 16 17 16 16

Mytar Cflow 17 17 17 20
Web Cflow 0 0 0 17
Cflow Cflow 20 20 20 20
Tux Cflow 14 15 14 16
Idct SoX 15 18 17 16

Mytar SoX 17 17 17 20
Web SoX 0 0 0 17
Cflow SoX 14 16 15 14
Tux SoX 13 13 13 14

TOTAL 188/300 233/300 196/300 256/300 
RQ1.1 RQ1.2 RQ2

Empirical Study 
RQ1,2
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ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.
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1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.
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Timing Information
Execution Time (minutes)

Donor Host
Idct Pidgin 5 7 97

Mytar Pidgin 3 1 65
Web Pidgin 8 5 160
Cflow Pidgin 58 16 1151
Tux Pidgin 29 10 574
Idct Cflow 3 5 59

Mytar Cflow 3 1 53
Web Cflow 5 2 102
Cflow Cflow 44 9 872
Tux Cflow 31 11 623
Idct SoX 12 17 233

Mytar SoX 3 1 60
Web SoX 7 3 132
Cflow SoX 89 53 74
Tux SoX 34 13 94

Total
RQ3

Empirical Study 
RQ3
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ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.
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Case Study 
RQ4

Transplant Time & Test Suites

Time (hours) Regression Regression++ Acceptance

H.264 26 100% 100% 100%
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ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.
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1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.
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RQ1.a

RQ1.b RQ2

Subjects Type Size 
KLOC

Reg. 
Tests

Organ 
Test Suite

Idct Donor 2.3 - 3-5
Mytar Donor 0.4 - 4
Cflow Donor 25 - 6-20

Webserver Donor 1.7 - 3
TuxCrypt Donor 2.7 - 4-5

Pidgin Host 363 88 -
Cflow Host 25 21 -
SoX Host 43 157 -

Case Study
x264 Donor 63 - 5
VLC Host 422 27 -

Subjects

• Minimal size: 
0.4k; 

• Max size: 422k; 

• Average Donor:
16k; 

• Average Host: 
213k;
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of test generation?
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the observed di↵erence is much larger than expected. For
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