
Automated Software
Transplantation

Alexandru Marginean — Automated Software Transplantation

Earl T.
Barr

Mark
Harman

Yue
Jia

Justyna
Petke

Alexandru
Marginean

CREST, University College London

Video Player

Start from
scratch

Why Autotransplantation?
Check open

source repositories

Alexandru Marginean — Automated Software Transplantation

Why not
handle
 H.264?

~100 players

AutotransplantationAutomatic Error Fixing

In-Situ Code ReusalManual Code Transplants

Alexandru Marginean — Automated Software Transplantation

Related Work

Clone Detection Code Migration Dependence
Analysis

Feature Location Code Salvaging Feature
Extraction

In-Situ Code
Reuse

Synchronising
Manual

Transplants

Automatic
Replay Copy-

Paste

AutotransplantationAutomatic Error Fixing

Related Work
Manual Code TransplantsIn-Situ Code Reusal

Alexandru Marginean — Automated Software Transplantation

Running Program

Debugger

Binary
Organ

Miles et al.: In situ reuse of logically extracted functional components

Autotransplantation

Manual Code Transplants In-Situ Code ReusalAutomatic Error Fixing

Related Work

Host Donors

Alexandru Marginean — Automated Software Transplantation

Sidiroglou-Douskos et al.: Automatic Error Elimination by Multi-Application Code Transfer

Related Work
Manual Code Transplants In-Situ Code Reusal

Automatic Error Fixing

Alexandru Marginean — Automated Software Transplantation

Autotransplantation

Human Organ
Transplantation

Alexandru Marginean — Automated Software Transplantation

Automated Software
Transplantation

Host

Donor

OOrgan

ENTRY

V

Organ’s
Test Suite

Manual Work:

Organ Entry

Organ’s Test Suite

Implantation Point

Alexandru Marginean — Automated Software Transplantation

μTrans

Alexandru Marginean — Automated Software Transplantation

Host

Donor

Stage 1:
Static Analysis

Host
Beneficiary

Stage 2:
Genetic

 Programming

Stage 3:
Organ

Implantation

Organ’s
Test Suite

Stage 1 — Static Analysis
 Donor

OEENTRY

Vein
Organ

Matching
Table Dependency

Graph

Alexandru Marginean — Automated Software Transplantation

H

Implantation
Point

Stm: x = 10; -> Decl: int x;Donor: int X -> Host: int A, B, C

Strong Proxies: Does it
produce the correct output?

Stage 2 — GP
S1 S2 S3 S4 S5 … Sn

Matching Table

V3H V4H

Donor
Variable ID

Host Variable
ID (set)

V1D

V2D

…

V1H V2H

V5H

Individual

Va
r

M
at

ch
in

g
St

at
em

e
nt

s

V1D V1H

V2D V4H

S1 S7 S73

M1:
M2:

…Genetic
Programming

Algorithm 1 Generate the initial population P ; the function
choose returns an element from a set uniformly at random.
Input V , the organ vein; SD, the donor symbol table; OM , the host

type-to-variable map; Sp, the size of population; v, statements in
individual; m, mappings in individual.

1: P := ;
2: for i := 1 to Sp do

3: m, v := ;, ;
4: for all sd 2 SD do

5: sh := choose(OM [sd])
6: m := m [{sd ! sh}
7: v := { choose(V) }
8: P := P [{(m, v)}
9: return P

variables used in donor at LO. For each individual, Alg. 1 first
uniformly selects a type compatible binding from the host’s
variables in scope at the implantation point to each of the
organ’s parameters. We then uniformly select one statement
from the organ, including its vein, and add it to the individual.
The GP system records which statements have been selected
and favours statements that have not yet been selected.

Search Operators During GP, µTrans applies crossover
with a probability of 0.5. We define two custom, crossover
operators: fixed-two-points and uniform crossover. The fixed-
two-points crossover is the standard fixed-point operator sepa-
rately applied to the organ’s map from host variables to organ
parameters and the statement vector, restricted to each vec-
tor’s centre point. The uniform crossover operator produces
only one o↵spring, whose host to organ map is the crossover of
its parents’ and whose V and O statements are the union of its
parents. The use of union here is novel. Initially, we used con-
ventional fixed-point crossover on organ and vein statements
vectors, but convergence was too slow. Adopting union sped
convergence, as desired. Fig. 4 shows an example of applying
the crossover operators on the two individuals on the left.
After crossover, one of the two mutation operators is ap-

plied with a probability of 0.5. The first operator uniformly
replaces a binding in the organ’s map from host variables
to its parameters with a type compatible alternative. In
our running example, say an individual currently maps the
host variable curs to its N_init parameter. Since curs is
not a valid array length in idct, the individual fails the
organ test suite. Say the remap operator chooses to remap
N_init. Since its type is int, the remap operator selects a
new variable from among the int variables in scope at the
insertion point, which include ‘hit_eof, curs, tos, length,
. . . ’ . The correct mapping is N_list to length; if the remap
operator selects it, the resulting individual will be more fit.

The second operator mutates the statements of the organ.
First, it uniformly picks t, an o↵set into the organ’s statement
list. When adding or replacing, it first uniformly selects a
index into the over-organ’s statement array. To add, it inserts
the selected statement at t in the organ’s statement list; to
replace, it overwrites the statement at t with the selected
statement. In essence, the over-organ defines a large set of
addition and replacement operations, one for each unique
statement, weighted by the frequency of that statement’s
appearance in the over-organ. Fig. 5 shows an example of
applying µTrans’s mutation operators.

At each generation, we select top 10% most fit individuals
(i.e. elitism) and insert them into the new generation. We
use tournament selection to select 60% of the population for
reproduction. Parents must be compilable; if the proportion
of possible parents is less than 60% of the population, Alg. 1
generates new individuals. At the end of evolution, an organ

that passes all the tests is selected uniformly at random and
inserted into the host at Hl.

Fitness Function Let IC be the set of individuals that
can be compiled. Let T be the set of unit tests used in GP,
TXi and TPi be the set of non-crashed tests and passed tests
for the individual i respectively. Our fitness function follows:

fitness(i) =

(
1
3 (1 +

|TXi|
|T | + |TPi|

|T |) i 2 IC

0 i /2 IC
(1)

For the autotransplantation goal, a viable candidate must,
at a minimum, compile. At the other extreme, a successful
candidate passes all of the TO

D , the developer-provided test
suite that defines the functionality we seek to transplant.
These poles form a continuum. In between fall those individ-
uals who execute tests to termination, even if they fail. Our
fitness function therefore contains three equally-weighted
fitness components. The first checks whether the individual
compiles properly. The second rewards an individual for
executing test cases to termination without crashing and last
rewards an individual for passing tests in TO

D .

Implementation Implemented in TXL and C, µScalpel
realizes µTrans and comprises 28k SLoCs, of which 16k is
TXL [17], and 12k is C code. µScalpel inherits the limita-
tions of TXL, such as its stack limit which precludes parsing
large programs and its default C grammar’s inability to prop-
erly handle preprocessor directives. As an optimisation we
inline all the function calls in the organ. Inlining eases slice
reduction, eliminating unneeded parameters, returns and
aliasing. For the construction of the call graphs, we use GNU
cflow, and inherit its limitations related to function pointers.

5. EMPIRICAL STUDY
This section explains the subjects, test suites, and research

questions we address in our empirical evaluation of automated
code transplantation as realized in our tool, µScalpel.

Subjects We transplant code for five donors into three hosts.
We used the following criteria to choose these programs. First,
they had to be written in C, because µScalpel currently
operates only on C programs. Second, they had to be popular
real-world programs people use. Third, they had to be diverse.
Fourth, the host is the system we seek to augment, so it had to
be large and complex to present a significant transplantation
challenge, while, fifth, the organ we transplant could come
from anywhere, so donors had to reflect a wide range of sizes.
To meet these constraints, we perused GitHub, SourceForge,
and GNU Savannah in August 2014, restricting our attention
to popular C projects in di↵erent application domains.

Presented in Tab. 1, our donors include the audio stream-
ing client IDCT, the simple archive utility MYTAR, GNU
Cflow (which extracts call graphs from C source code), Web-
server3 (which handles HTTP requests), the command line
encryption utility TuxCrypt, and the H.264 codec x264. Our
hosts include Pidgin, GNU Cflow (which we use as both a
donor and a host), SOX, a cross-platform command line au-
dio processing utility, and VLC, a media player. We use x264
and VLC in our case study in Sec. 7; we use the rest in Sec. 6.
These programs are diverse: their application domains

span chat, static analysis, sound processing, audio streaming,
archiving, encryption, and a web server. The donors vary in
size from 0.4–63k SLoC and the hosts are large, all greater
3https://github.com/Hepia/webserver.

261

Does it compile?

Weak Proxies:
Does it execute test cases without

crashing?
Alexandru Marginean — Automated Software Transplantation

Host

Organ

Donor

RQ1: Do we break the initial
functionality?

RQ2: Have we really added
new functionality?

RQ3: How about the
computational effort?

RQ4: Is autotransplantation
useful?

Research Questions
Regression TestsAcceptance Tests

Alexandru Marginean — Automated Software Transplantation

Research QuestionsRQ1: Do we break the initial
functionality?

RQ3: How about the
computational effort?

RQ4: Is autotransplantation
useful?

RQ2: Have we really added
new functionality?

Empirical Study

15 Transplantations
300 Runs
5 Donors
3 Hosts

Case Study:

H.264 Encoding
Transplantation

Alexandru Marginean — Automated Software Transplantation

Validation

Alexandru Marginean — Automated Software Transplantation

Regression
Tests

Augmented
Regression

Tests

Host
Beneficiary

Donor
Acceptance

Tests

Acceptance
Tests

Manual
Validation

RQ1.1

RQ1.2 RQ2

Subjects Type Size
KLOC

Reg.
Tests

Organ
Test Suite

Idct Donor 2.3 - 3-5
Mytar Donor 0.4 - 4
Cflow Donor 25 - 6-20

Webserver Donor 1.7 - 3
TuxCrypt Donor 2.7 - 4-5

Pidgin Host 363 88 -
Cflow Host 25 21 -
SoX Host 43 157 -

Case Study
x264 Donor 63 - 5
VLC Host 422 27 -

Subjects

• Minimal size:
0.4k;

• Max size: 422k;

• Average Donor:
16k;

• Average Host:
213k;

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Alexandru Marginean — Automated Software Transplantation

Experimental Methodology
and Setup

μSCALPEL

Host

Implantation
Point

Donor

OEOrgan’s
Test Suite

Host
Beneficiary

Implantation
Point

Organ

Count LOC —
CLOC

Count LOC
CLOC

x 20

GNU Time

Validation Test
Suites

Coverage Information:
Gcov

Alexandru Marginean — Automated Software Transplantation

Ubuntu 14.10, 16 GB Ram
8 threads

All Test Suites
Donor Host Passed Regression Regression++ Acceptance
Idct Pidgin 16 20 17 16

Mytar Pidgin 16 20 18 20
Web Pidgin 0 20 0 18
Cflow Pidgin 15 20 15 16
Tux Pidgin 15 20 17 16
Idct Cflow 16 17 16 16

Mytar Cflow 17 17 17 20
Web Cflow 0 0 0 17
Cflow Cflow 20 20 20 20
Tux Cflow 14 15 14 16
Idct SoX 15 18 17 16

Mytar SoX 17 17 17 20
Web SoX 0 0 0 17
Cflow SoX 14 16 15 14
Tux SoX 13 13 13 14

TOTAL 188/300 233/300 196/300 256/300
RQ1.1 RQ1.2 RQ2

Empirical Study
RQ1,2

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Alexandru Marginean — Automated Software Transplantation

Passed
All

188/300

Regression

233/300
RQ1.1

Regression++

196/300
RQ1.2

Acceptance

256/300
RQ2

Timing Information
Execution Time (minutes)

Donor Host
Idct Pidgin 5 7 97

Mytar Pidgin 3 1 65
Web Pidgin 8 5 160
Cflow Pidgin 58 16 1151
Tux Pidgin 29 10 574
Idct Cflow 3 5 59

Mytar Cflow 3 1 53
Web Cflow 5 2 102
Cflow Cflow 44 9 872
Tux Cflow 31 11 623
Idct SoX 12 17 233

Mytar SoX 3 1 60
Web SoX 7 3 132
Cflow SoX 89 53 74
Tux SoX 34 13 94

Total
RQ3

Empirical Study
RQ3

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Alexandru Marginean — Automated Software Transplantation

Average

334 (min)

Std. Dev.

10 (Average)

Total

72 (hours)

Case Study
RQ4

Transplant Time & Test Suites

Time (hours) Regression Regression++ Acceptance

H.264 26 100% 100% 100%

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Alexandru Marginean — Automated Software Transplantation

 MSU Sixth
MPEG-4 AVC/H.264

Video Codecs Comparison,
with ~24% better encoding

than second place.

Second Annual MSU
MPEG-4 AVC/ H.264
Codecs Comparison

Doom9's 2005 Codec
Shoot-Out

Automated Software
Transplantation

H

D

OO

ENTRY

V

Organ’s
Test Suite

Manual Work:

Organ Entry

Organ’s Test Suite

Implantation Point

Alexandru Marginean — Automated Software Transplantation

μTrans

Alexandru Marginean — Automated Software Transplantation

Host

Donor

Stage 1:
Static Analysis

Host
Beneficiary

Stage 2:
Genetic

 Programming

Stage 3:
Organ

Implantation

Organ’s
Test Suite

Validation

Alexandru Marginean — Automated Software Transplantation

Regression
Tests

Augmented
Regression

Tests

Host
Beneficiary

Donor
Acceptance

Tests

Acceptance
Tests

Manual
Validation

RQ1.a

RQ1.b RQ2

Subjects Type Size
KLOC

Reg.
Tests

Organ
Test Suite

Idct Donor 2.3 - 3-5
Mytar Donor 0.4 - 4
Cflow Donor 25 - 6-20

Webserver Donor 1.7 - 3
TuxCrypt Donor 2.7 - 4-5

Pidgin Host 363 88 -
Cflow Host 25 21 -
SoX Host 43 157 -

Case Study
x264 Donor 63 - 5
VLC Host 422 27 -

Subjects

• Minimal size:
0.4k;

• Max size: 422k;

• Average Donor:
16k;

• Average Host:
213k;

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Alexandru Marginean — Automated Software Transplantation

