Systematic Execution of
Android Test Suites in Adverse Conditions

Christoffer Quist Adamsen, Gianluca Mezzetti, Anders Mgaller
Aarhus University, Denmark

ISSTA 2015, Baltimore, Maryland

Motivation

Mobile apps are difficult to test thoroughly

Fully automated testing tools:
capable of exploring the state space systematically
no knowledge of the intended behaviour

Manually written test suites widely used In practice

app largely remains untested in presence of common
events

2/24

Goal

Improve manual testing under adverse conditions
Increase bug detection as much as possible
Run test suite without significant slowdown

Provide precise error messages

3/24

Methodology for testing

Systematically expose each test to adverse conditions,
where unexpected events may occur during execution

Which unexpected events does it make sense to
systematically inject”

4/24

Neutral event sequences

An event sequence n is neutral If injecting n
during a test t iIs not expected to affect the outcome of ¢

We suggest a general collection of useful neutral event
seguences that e.qg. stress the life-cycle of Android apps

Pause — Resume

Pause — Stop — Restart

Pause — Stop — Destroy = Create
Audio focus loss — Audio focus gain

5/24

Example

public void testDeleteCurrentProject() {
createProjects();

* Execute each neutral event sequence
at each injection point CT);

clickOnText("Yes");
assertFalse("project still visible",
searchText(DEFAULT_PROJECT);

Injection points

6/24

Example

public void testDeleteCurrentProject() {
createProjects();
clickOnButton("Programs");
longClickOnTextInL1ist(DEFAULT_PROJECT);

clickOnText("Delete");

clickOnText("Yes");

assertFalse("project still visible", x

searchText(DEFAULT_PROJECT);

Injection points

6/24

testingproject1

My first Drone pr...

This can not be undone!

Example

public void testDeleteCurrentProject() {

createProjects();
% clickOnButton("Programs™);
o LongClickOnTextInList(DEFAULT_SRSTEATNRIEAATE
_5 e lickOnText("Delete"); too aggressive
g clickOnText("Yes");
C

assertFalse("project still visible", x
searchText(DEFAULT_PROJECT);

8/24

Hypothesis for aggressive injection strategy

Few additional errors will be detected by:
Injecting a subset of the neutral event sequences, and

using only a subset of the injection points

9/24

Example

public void testDeleteCurrentProject() {
createProjects();

clickOnButton("Programs");
longClickOnTextInL1ist(DEFAULT_=Sies ootentially
clickOnText("Delete"); shadows others
clickOnText("Yes");
assertFalse("project still visible", x
searchText(DEFAULT_PROJECT);

Injection points

10/ 24

Evaluating the error detection capabilities

Empirical study using our implementation Thor
on 4 open-source Android apps (with a total of 507 tests)

To what extent is it possible to trigger failures
iNn existing test suites by injecting unexpected events?

4729 tests of a total of 507 faill in adverse conditions!

1770 test failures counted as distinct failing assertions
(none of which appear during ordinary test execution)

11/24

Evaluating the error detection capabilities

- Manual classification of 682 of the 1770 test tailures
revealed 66 distinct problems

Logical Ul
: : Not User Element

APP Crash Silent fail persisted setting lost disappears

Pocket

Code 109 742 1 (6) 14 (104)

Pocket

Paint 2 (45) 1(4) 4 (42) 9 (131)
Car Cast 1(7) 5(18)
AnyMemo -

#distinct problems (#error messages)

12/ 24

Evaluating the error detection capabilities

Only 4 of 22 distinct bugs that
damage the user experience are crashes

ast fallures

Logical Ul
Crash Silentfail o' User Element
persisted setting lost disappears
Pocket
(| .
Code u ' w7042 1(6) 14 (104)
]
Pocket = -
Paint & = *°) 1(4) 4 (42) 9 (131)
|
N
Car Cast w 1(7) N 5 (18)
\g
’.l“’
AnyMemo 4 (15)

12/ 24

Evaluating the error detection capabilities

Fallures dominated

- Manual classification of 682 of the v Ul alitches
revealed 66 distinct problems y LIS

Logical Ul
: : Not User Element

APp Crash Silent fail persisted setting lost disappears
Pocket 19 7@2) 1(6) 34 (104) %
Code . .
|
Pocket . .
Paint 2 (45) 1(4) 4 (42) . 9(131) »
N |
Car Cast 1 (7) s 5(18) p
. =
AnyMemo *s 4(15) o

. R e

12/ 24

Evaluating the execution time

- Competitive to ordinary test executions

App

Strategy AnyMemo Car Cast Pocket Code Pocket Paint

Basic 1.05x 1.21x 1.38x% 0.99x

13/ 24

Evaluating the execution time

Competitive to ordinary test executions

Strategy

AnyMemo

Car Cast

App

Pocket Code

Pocket Paint

Basic

Rerun

1.05x

2.11x

1.21x

3.09x

1.38x

4.70x

0.99x

3.70x

13/ 24

Summary of evaluation

- Successfully increases the error detection capabilities!

- App crashes are only the tip of the iceberg

- Small overhead when not rerunning tests

7

Goal, revisited

Improve manual testing under adverse conditions
Increase bug detection as much as possible
Run test suite without significant slowdown

Provide precise error messages

15/ 24

Problems with rerunning tests

Rerunning tests to identity additional bugs is expensive

More assertion failures or app crashes
do not necessarily reveal any additional bugs

For example, the following tests from Pocket Code
check similar use cases to testDeleteCurrentProject():

testDeleteProject()
testDeleteProjectViaActionBar()
testDeleteProjectsWithSpecialChars()
testDeleteStandardProject()
testDeleteAllProjects()
testDeleteManyProjects()

16/ 24

Heuristic for reducing redundancy

During test execution, build a cache of abstract states

Omit injecting n in abstract state s after event e,
if (N, s, e) already appears in the cache

17 /24

Evaluating the redundancy reduction

The redundancy reduction improves performance and
results in fewer duplicate error messages!

Case study on Pocket Paint:
Execution time reduces from 2h 48m to 1h 32m
/9% less error messages

14 of the 17 distinct problems spotted

18/ 24

Goal, revisited

Improve manual testing under adverse conditions
Increase bug detection as much as possible
Run test suite without significant slowdown

Provide precise error messages

19/ 24

Isolating the causes of failures

Since multiple injections are performed in each test,
it may be unclear which injection causes the failure

20/ 24

Hypothesis for failure isolation

Most errors can be found by:
injecting only one neutral event sequence, and

using only one injection point

21/ 24

Isolating the causes of failures

For falling tests, apply a simple variant of delta debugging:

Identify a neutral event sequence n to blame
Do a binary search on the neutral event sequences
(keeping the injection points fixed)

Identify the injection point to blame
Do a binary search on the sequence of injection points
(injecting only n)

22 / 24

Evaluating the faillure isolation

Failure isolation works!
Applied the failure isolation to all 429 failing tests

Successfully blamed a single neutral event sequence
and injection point for all 429 except 5 failures

23/ 24

Conclusion

Light-weight methodology for improving
the bug detection capabilities of existing test suites

Key idea: Systematically inject neutral event sequences

Evaluation shows:
can detect many app-specific bugs
small overhead

precise error messages

http://brics.dk/thor

24 /24

http://brics.dk/thor

